INTRODUCTION TO ALGEBRAIC GEOMETRY

WEI-PING LI

1. PRELIMINARY OF CALCULUS ON MANIFOLDS

1.1. Tangent Vectors. What are tangent vectors we encounter in
Calculus?
(1) Given a parametrised curve a(t) = (z(t),y(t)) in R? o/(t) =
(2'(t),¥/(t)) is a tangent vector of the curve.
(2) Given a surface given by a parameterisation

x(u,v) = (x(u,v),y(u,v)z(u,v)),

? X g_x is a normal vector of the surface. Any vector
perpengiculagj to n is a tangent vector of the surface at the
corresponding point.

(3) Let v = (a, b, c) be a unit tangent vector of R? at a point p € R?,
f(z,y, z) be a differentiable function in an open neighbourhood
of p, we can have the directional derivative of f in the direction

Vv

n =

0 0 0
Duf = a5 (p) + b5 () + 5 (). (L)

In fact, given any tangent vector v = (a, b, ¢), not necessarily a unit
vector, we still can define an operator on the set of functions which are
differentiable in open neighbourhood of p as in (1.1)

Thus we can take the viewpoint that each tangent vector of R3 at p
is an operator on the set of differential functions at p, i.e.

0 0 0
v =(a,b,v) — e + ba—y + C£|p,
or simply
v = (a,b,c)—)a%+b§y+c% (1.2)

with the evaluation at p understood. The set T,R?® of such tangent
vectors is a three-dimensional vector space. If we choose

e = (1,0, O),e2 = (0, 1,0)793 = (0,0, 1)
1



2 WEI-PING LI

as a basis of the tangent space T,R?®, under our new viewpoint, ey, ez
) .
and ez correspond to operators —, — and — respectively. From
ox’ Oy 0z
now on, we will take a viewpoint that 7,R* is a vector space with
. 0 . .
basis —, — and — and each element v € T,R? acts on differentiable
ox’ Oy 0z
functions f at p as (1.1).

1.2. Cotangent Vectors and Total Differential. Given a vector
space V', we have the dual space V* defined as the vector space of
linear transformations from V to R:

V*={L:V — R| L is a linear transformation}.

Given a basis eq,...,e, of V, there is a dual basis e{*,...,e," of V*
defined as
ei*(ej> = 6l,j
Now let’s apply the concept of linear algebra above to the vector
space T,R*. For the convenience of notations, we use (r1,zq,23) to
denote the coordinates of R3. We get the dual space, denoted by T’ ;RP’,
called the cotangent space of R* at p. Vectors in TR? are called

0 0
d f T R3
81‘1’ 6:1:2 an 81'3 © P ’
its dual basis is denoted by dx1, dxs, dz3, i.e.,

0
de. | — ) =6. ..
xl(axj) o

For a function f differentiable at p, we can define a cotangent vector
at p by

cotangent vectors. If we choose the basis

0 0 0 0 0 0
df |, (aaxl oot Cax3> = (aa—i(p) + ba_;i@) + ca—i)(p)) (1.3)

In terms of the basis dxq, dxs, d3,

iy = 3L )i + 5Lt + 2 (g (1.4

This has exactly the same form of the total differential we learned
in Calculus. In textbooks of Calculus, dxy, drs and dx3 are called
symbols representing “THINGS” that are infinitesimal small, and dx;
is the “limit” of Axz; when Ax; goes to zero. Similarly for the total
differential. In Calculus, we have

af af 0

_ f
Af = e (p)Azy + s (p)Azy + o (p)Azs + R,
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where R is a remainder going to zero as Ax; goes to zero if f is differ-
entiable at p. When Axz; goes to zero, we are told that we get the total

differential
flp = () Z1 Dy (p)dzy 93()%

But when Azx; goes to zero, everything above is zero, isn’t it? Clearly
dz; and the total differential are not properly explained in textbooks
of Calculus.

All the discussions above can be done on R"™.

From the discussions in this subsection, we see that just using the
new viewpoint of tangent vectors as in (1.2), the concept of dual spaces
in linear algebra, and the definition (1.4), all these ambiguously defined
dx; and the total differential are defined precisely.

(9f of of

1.3. Vector Fields and Differential 1-Forms. In Calculus, a vector
field on R? is a vector valued function v(x) = (f(x), g(x), h(x)) rep-
resenting a tangent vector at the point (x). Using our new viewpoint
(1.1), the vector field can be represented by
0 0 0
— —+h
F0) 1+ ()5~ + o) -

Similarly, we can also have cotangent vector fields.
f(x)dzy + g(x)dxs + h(x)dxs

represents a cotangent vector at the point x. Thus if f is a differentiable
function in an open set U € R3, the expression (1.4) gives a cotangent

vector field on U
of of
BT R (1.5)

Cotangent vector fields are called 1-forms. Thus (1.5) is a 1-form.

1.4. Multi-linear Algebra and Exterior Algebra of Grassmann.
Given a vector space V, a multi-linear map 7 from V¥ =V x ... x V
—_——

to R is a linear transformation in each variable, i.e.,
T(Vl, ..., aVj +bui,...,vk)
=aT (V1. .y, Viy.o oy Vi) + 0T (Ve, .o w00, V).
There are many such multi-linear maps in Calculus and Linear Algebra,
such as the dot product (or inner product) and the determinant. The
determinant of an n X n matrix can be regarded as a multi-linear map

from n copies of R™ to R where the i-th column vector of the matrix
is considered as an vector in i-th copy of (R™)".
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Multi-linear maps can be described via the language of tensors due
to the following universal property of tensor product. Given two vector
spaces V and W, there exists a vector space V ® W, called the tensor
product of V and W, together with a multilinear map ¥: V x W —
V @ W, with the following universal property that for any vector space
7 and any multilinear map ¢: V xW — Z, there exists a unique linear
map from f: VW — Z such that ¢ = fo1. From this definition, we
can see that the tensor product is unique up to a unique isomorphism.

We can also define the tensor product via the direct construction:
V ® W is the vector space generated by symbols (v, w) for v € V' and
w € W quotient out the subspace generated by (v + v/, w) — (v, w) —
(0/7 U)), (U7 w+w/)_(va w)—(v, U)/), ((ZU, w)_a(v7 U)) and (U7 aw)—a(v, w)
for v, € V, w,w’ € W and a € R.

Given vector spaces V7, ..., Vi, we can also define similarly the tensor
product V; ® ... ® V;. For a vector space V, we use V®* to denote the
k-fold tensor product of V' with itself k times. Given a basis ey, ..., e,
of V, V® has a basis ¢;, ®...¢; for 1 <iy,...,i < n. An element in
V*®F gives a k-fold multilinear map on V as follows. Let {e} be the
dual basis in V* of the basis {e;} of V, € ®...¢; defines a multilinear
map on V:

e; ®...e (vi,..., ) =¢€j (v1)...-ef (), forvy,...,0€V.

One can verify that the vector space of multilinear maps from V* to R
is isomorphic to the the vector space V*®*.

Among multilinear maps on V', there is a special kind of multilinear
maps, called alternating linear maps, defined by

T(v1, VeV, 0) = =T(V1, 000,05, 00, Vo, ).

The determinant is a such map. There is an operation changing a
multilinear map 7' to an alternating linear map as follows:

1 :
AW(T) (v, ... 0) = o Z sign (o) T (Vo(1ys - - - Vo(k)),

T oEeSy

where S;, is the symmetric group on k letters. One can compare the
expression on the right with the definition of determinants.

Let A*V to represent the vector space of all k-fold alternating mul-
tilinear maps on V, we can define a wedge product as follows: let
T € A*V and S € AV,

(k + 0)!

TAS ==

AlL(T ® S).
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We can check that the wedge product is multilinear and anti-commutative:
TAS=(—1DFSAT.

|
AFV has dimension m since it has a basis

{e“/\/\elk|1§11<<zk§n}

Thus A*V = 0if k > n, A"V = R with a basis e; A ... A e, and
A’V = R by convention. Therefore the vector space

AV = AV AV +... A"V

is an algebra with the wedge as the product, called the exterior algebra,
or Grassmann algebra.

1.5. Differential Forms and Exterior Derivatives. After a brief
excursion to the garden of linear algebra, let’s come back to the palace
of Calculus.

Let V' be the tangent space T,R"™ of R"™ at any point p with basis

{ 5 } and V* be the cotangent space with basis {dz;}.
T

w(p) = Z firin(D)d2sy Ao A day,

1<i1<...<i<n

is an element in A*V*. When p varies in an open set U of R", f;, ;s
are functions of p. It can also regarded as a section of the map

[Ior > v (1.6)
peU

If fi ... 's are differentiable, w is called the differential k-form on U.
There is wedge product on forms. Given a k-form w and a ¢-form 7
on U, we can have w Ay which is a k + ¢-form and w An = (—)*n Aw.
We can also define the exterior derivative d on k-forms to get (k+1)-
forms:

1<i1 <...<ig<n
One can check that the exterior derivative satisfies Leibniz rule,
dwAn) =dwAn+(=)kw A dn,

and
dod=0.
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The last one can be seen through a simple example. Let f be a
smooth function on R? with coordinates x,y. We have
of of

Af = Gyde+ 5 dy

ddf = dg/\d:cjtdg/\dy
ox dy

0 f 0 f
 Oyoz dy A dz + 0xdy
0? 0?
L

Oyoxr  0xdy
= 0.

dz N\ dy

Ydz A dy

We see that dd = 0 is due to the known fact in Calculus that the
multiple partial derivatives of smooth functions are independent of the
order of partial differentiations.

Let’s come back to Calculus and see how our differential forms and
exterior differentiations are related to known quantities and operations
there.

Consider a 1-form wq, a 2-form ws, and a 3-form w3 on an open subset
U of R? with coordinates x,, o, 3.

wr = fidxy + fadzs + fadas, (1.8)
Wo = gldﬂfg A dﬂ?g + gzdﬂf:g A dIl + ggdﬂfl AN dIQ, (19)
W3y = fd.l’l AN dCL’Q VAN dl’g. (]_]_0)
dwl = dfl /\dl’l +df2/\dl’2+df3/\dﬂ?3 (111)
= %dm Adry + %dxg Adzy + %dwl A dzg + %dl'g A dxg
8@ (91‘3 8x1 8.1‘3
0 0
+£d$1 VAN dl’g + ﬁdﬂ?g VAN d$3
8301 (9.1'2
Ofs  0fs ofi  0fs f  0fi
— (43 0y g Adas + (2L~ g A day + (212~ P A d
(61’2 8[E3) 2 A . + (8x3 8901) 3 A Tt (6m1 81’2) o A 2
If we identify the 1-form (1.8) with the vector field

0 0 0
V= fl@xl + f28£L‘2 * f?’@xg
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and the 2-form (1.9) with the vector field

o 0
oz, Por, " Pox,

then we can see that the 2-form dw; corresponds to the curl of the
vector field v, i.e., curl(v).

u=gi-— + 92

du}2 = dgl VAN dl’g N d(lfg + dQQ VAN dlE3 VAN dl’l + dgg VAN del VAN deQ

= agl dill'l N dl’z N dl’g + a—dilfl A dl’z N dl’g + a—dﬂfl A dl’z N dl’g
0x, 0xy 03
g1 0gs  0gs
= dxy Ndxy Nd 1.12
(azl o axg) T A A G (1.12)

If we identify w3 with the function f, then the 3-form dws above
corresponds to div(u).
Given a differentiable function g, gradient of ¢
dg 0 dg 0 dg 0
(99(:1 8131 81’2 8562 8:53 8x3
is identified with the 1-form
9g dg 99
—dzr, + —d
3:1:1 Tt 81'2 T2t 8333
by the previous rule of the identification of forms with vector fields.

Now we see that differential operators in vector calculus such as
grad, curl, div are all one single exterior differentiation d.

grad(g) =

dg = ——dx3

1.6. Smooth Manifolds. We have encountered circles in the plane
or the space, and spheres in the space in calculus. The way we study
them is via parameterizations. In fact, these are examples of compact
manifolds. The very definition of manifolds is hidden implicitly in
textbooks of Calculus.

In Calculus, on R!',R? and R3, we can do differentiations and in-
tegrals of functions and vector fields since the Euclidean spaces have
coordinates. But to find tangent vectors of circles and spheres and do
the line integral on circles and the surface integral on surfaces, we need
the aid of parameterizatoins to provide coordinates. And very often we
need several parameterizations, for example, spheres need more than
one parameterizations. The key of the paramerterizations is that, for
a sphere for example, they give identifications of some open subsets of
the shpere with open sets in R2. Or loosely speaking, the sphere is
locally isomorphic to an open subset of R2.
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Example 1.1. Consider two parameterizations of the unit sphere S
given by 22 + 3% 4 22 =1,
7, (u,v) = (u,v, V1 —u2 —v2) : Wy = {(u,v) |u* +v* < 1} = S,
Uy =z (Wh);

X, (5,1) = (V1 —82—125,1): Wy = {(s,1)|s* +t* < 1} = S,
U2 :XJr(Wz).

In the intersection z. ' (U; N Usy), we can consider, for u > 0,
x;'ozy(u,v) = (s(u,v),t(u,v)) = (v, V1 —u? —0?), (1.13)

called the transition function.
Clearly s(u,v) and t(u,v) are differentiable functions of u,v. The
determinant of the Jacobian matrix of the transition function (1.13) is

Os Ot 0Os Ot —2u U

ou Ov ov 8u: 2\/1—u2—1)2: 1—u2—v2.

O

How do we define a differentiable function on S in Caculus? For
example, in Calculus we say a function f on U1NU, C S is differentiable
if there exists a differentiable function F' on an open neighbourhood
V of Uy NUy in R? such that f = F|y,ny,. This definition needs the
ambient space R3 of the sphere S. In fact, we don’t need the help of the
ambient space, but using parameterizations as follows. We can use the
paramerterization x, to define f differentiable if fox, is differentiable
as a function of s,t. However, there is another parameterization z, .
Could it be that foz, is not a differentiable function of u, v? If it were,
this approach would depend on parameterizations and thus should be
rejected as a definition. Fortunately, due to the change rule,

fozy =(foxy)o(xi ozy)

is differentiable.

Now we can say a manifold X is, just like the sphere, a topological
space locally identified with an open subset of R™ via the parameter-
izations. If we want more properties of X, we can add requirements
of the parameterizations. For example, if we want to define smooth
functions on X without the help of an ambient Euclidean space, we
just require that transition functions of the parameterizations are all
smooth due to the Chain Rule in Calculus.
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Definition 1.2. Let X be a topological space with countable bases
and Hausdorff. X is said to be a smooth manifold if there exists a
covering {U;} of X together with maps ¢;: U; — R™ such that ¢;
is a homeomorphism from U; to the open subset ¢;(U;) of R™ and
©; 0 goj_li 0;(U;NU;) CR" = ¢;(U;NU;) C R™ is a smooth map. If
{z1,...,2,} is a coordinate system for R™, then it is also called a local
coordinate system for U; (or X). zx(yp;) is a function on U;, by abuse
of notation, denoted also by x.

If X is connected, the dimension of X is defined to the number n
above.

Clearly, the inverse o; ' of ¢; in the definition is a parameterization
we saw in Calculus and discussed above.

Example 1.3. Consider the real projective space RP? defined as fol-
lows.

RP? = {one dimensional subspaces of R3}.

Since a line passing through the origin in R? is determined by a non-
zero directional vector and two non-zero vectors give the same line if
and only if they are proportional, we can write RP? in another way:

RP? = R® — {0}/
where the equivalence relation is that (a1, as, as) is equivalent to (by, by, b3)
if and only if (a1, as, a3) = A(by, be, b3) for A # 0. Thus we can write
R]P)Z = {[1’1, X2, 1'3] ‘ [xla Ta, $3] = [)\xla )\an >\$3]
for A # 0, (z1, 22, x3) # 0}.
There is clearly a map
m: R~ 0 —= RP?* w((21,20,23)) = |11, 72, 3].

We give RIP? the quotient topology, i.e., a set U € RP? is defined to be
an open set if 771(U) is an open subset of R® — 0.

We use coordinate charts on RP? as follows. Let U; = {x; # 0} C
RIP2. We define a map

Q1 U1 —>R2, [ZL’l,IQ,JIg] — (ﬁ,ﬁ) ER2.
Ty T2
We can define similar coordinate charts ¢y: Uy = {x3 # 0} — R? and
w3: Us = {x3 # 0} — R2. One can check that ¢; is a homeomorphism.

Let’s check the transition functions. For example,

@207 R? — {0} —» R* — {0},
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Ly Ly
@) > ] =151, = (5.2),

Clearly this map is a smooth map. Thus RP? is a smooth manifold.

Consider the sphere S: 23 4+ 23 + 23 = 1. We have a surjection
map 7|g: s — RP2. Since the sphere S is compact and the map 7|g
is continuous, the real projective space RP? is compact. For a point
(x1,29,23) € S, (A-x1, A 29, X - x3) € S if and only if A = £1. Thus
S is a double cover of RIP?.

How do we define tangent vectors on a smooth manifold?

Assume X is an n-dimensional smooth manifold smoothly embedded
in RY and ¢~ !’s is a smooth parameterization of an open subset U of
X. Then the tangent space of U at a point p is generated by tangent
vectors

D1 D1
Ory 7 Oz,
If (y1,...,yn) is a coordinate system on RY and we write

o Hxy, .., 2p) = (fl(xl,...,xn),...,fN(xl,...,xn)),

then we have

Do~ o (af1 8fN)

or;  \ox; " 0x; )’
which can also be written as, if we regard the tangent vector as an
operator on differential functions,

ofr Ify &

— 4. .. . 1.14
Ox; Oyy et Ox; Oyn (L14)
Given a smooth function g on U, we have
dfi 0 dfy 0 _af1 dg dfn Og
(axzﬁyl et 0x; 8yN) 9= Ox; Oy et Ox; Oyn
dgop™!

by the chain rule.

acting on differential functions

0
a(L’i

(aii)(g) = 895—5_1- (1.15)

Comparing (1.14) and (1.15), we see that
d 0fi 0 dfy 0
or;  Ox; Oy et dx; Oyn

We define differential operators

g on U by
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Thus if we regard tangent vectors as differential operators, the tangent
space 1,X is a vector space spanned by the tangent vectors

0 0

81’1’.”’813”

(1.16)

for all p € U.

The advantage of this viewpoint is that the definition of tangent
vectors of a smooth manifold doesn’t need the ambient Euclidean space
RY and hence can be used as the definition of an arbitrary smooth
manifold.

We can define the concept of smooth maps between smooth man-
ifolds. Given a map F: M — N between two smooth manifolds M
and N. We say F' is smooth if for every point p € M, a coordi-
nate chart ¢: U — R™ of an open subset U containing p, and a
coordinate chart ¢: V' — R™ of an open subset V' containing F(p)
such that U c F~Y(V), the map ¢ o F o o' is a smooth map from
e(U) C R™ — R™.

1.7. Tangent Bundles and Cotangent Bundles. In Calculus, for
curves in the plane R? and surfaces in R?, we learned the concept of
tangent lines of curves and tangent planes of surfaces. For example, for
a smooth surface S in R3, for each point p € S, we have the tangent
plane T}, consisting of tangent vectors of S at p. If we vary the point
p, we get a subset T'S of R3 x R? with a map 7 to S

m: TS =[[75 ={(p.v) eR*xR*|pe S,ve€T,S} - S.

peES

The map m maps a tangent vector v at p to the point p. Clearly each
fiber 7=!(p) is a vector space.

We can do the same for arbitrary n-dimensional smooth manifold X
to get a set

X =[] 7,X,
peX

called the tangent bundle together with a natural map 7=: TX — X
mapping 7,X to p. Clearly each fiber 7(p) = T,X is a vector space.
Furthermore, we can give a smooth manifold structure to T'X as fol-
lows. Let ¢: U — R" be a coordinate chart of X. Let z,...,z, be
a coordinate system on R™. At each point p of U, based upon the
discussion of the basis (1.16) in §1.6, we can choose a basis of T, X:

0 0

_’ L] - .
81’1 82L‘n
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Thus we can define a coordinate chart of 7= (U) = T X|y:

0

) o 9
b7 1<U) — R"xR , (p,ala—m+...ana—%> — (@(p),(al,---,a/n)).

We can give the topology to T'X such that W is an open subset of T'X
iff (W Na—'(U)) is open for every U.

®|,,, the restriction of ® on the fiber of m over p € X, is clearly an
isomorphism of vector spaces.

We can check that TX is a smooth manifold. In fact, let ¢ : V' C

X — R” be another coordinate chart with v, ..., y, as the coordinates
of R"™. We have the corresponding coordinate chart for 7=(V):
0 0
U: 7 HU) - R"xR" by —+...0h— | — ,(b1,...,0y)).
) S R (b ) > (00, G )
Let’s write

Vo Ny, ... 1,) = (fl(xl,...,xn),...,fn(xl,...,xn)).
Let g be a differential function on U NV,

( 9 )g _9gop™t _9((govoWop™)

8_331 ox; o0x;
_ 0hdgoy! N Ofn g0t
oxr; Oy Oz Oy,
L (i, o),
Ox; Oy, O0x; Oy, )7

Thus we get the transformation formula for different bases of the
tangent space T, X forpe UNV:

0 _on 0, 9% arm
Thus we get
b, g_ﬁ . ngi a
‘ ofs ... Of '
b, O ... O a,

We can use Jac() o ¢~ 1) to represent the n X n matrix above. Thus
the transition function ¥ o ®~! is given by

Uod ' (p,v) = (Yo (p),Jac(tho o )(V)),

and smooth.
If the surface S is the zy-plane in R?, then 7S = S x R?, i.e.,the
tangent bundle is the product of S with R?. We call such tangent
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bundle a trivial bundle. If we consider the sphere S: x? + 3% + 2% = 1,
the tangent bundle T'S won’t be a trivial bundle. However the tangent
bundle of the circle is a trivial bundle.

The tangent bundle of a smooth manifold has some properties shared
by many other manifolds, which are called a vector bundle. Let’s give
a definition of vector bundles.

Definition 1.4. Let X be a smooth manifold and £ be another smooth
manifold with a smooth map n: £ — X. FE is called a vector bun-
dle if for each p € X, the fiber 77! is a vector space of dimension r
and there exists an open subset U containing p and a diffeomorphism
®: 71 (U) — U xR" such that ®|,, the restriction to each fiber 77!(q),
is an isomorphism of vector spaces for every ¢ € U.

If we take dual of each fiber of a vector bundle F over X, we get a
dual vector bundle E* over X. The dual tangent bundle is called the
cotangent bundle, denoted by 7% X.

A smooth section s of a vector bundle E over X is a smooth map
from X to E such that 7o s(p) = p, i.e., s maps p to a vector in the
fiber E|, of m over p. Thus we can see that a smooth vector field on
X is just a smooth section of the tangent bundle T'X, and a smooth
1-form is just a smooth section of the cotangent bundle 7% X.

We can also apply various constructions in linear algebra to vector
bundles. For example, we take i-th wedge product A'E of the vector
bundle E. The smooth sections of APT*X are called smooth p-forms.
These are the extension of the concept of differential forms on R™ in
1.5 to manifolds.

One can also extend the exterior differentiations to manifolds. Can
you give a try? Do it locally, i.e., using local coordinate charts, then
prove that it is independent of the choice of charts.



