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1. Preliminary of Calculus on Manifolds

1.1. Tangent Vectors. What are tangent vectors we encounter in
Calculus?

(1) Given a parametrised curve α(t) =
(
x(t), y(t)

)
in R2, α′(t) =(

x′(t), y′(t)
)

is a tangent vector of the curve.
(2) Given a surface given by a parameterisation

x(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
,

n =
∂x

∂u
× ∂x

∂v
is a normal vector of the surface. Any vector

perpendicular to n is a tangent vector of the surface at the
corresponding point.

(3) Let v = (a, b, c) be a unit tangent vector of R3 at a point p ∈ R3,
f(x, y, z) be a differentiable function in an open neighbourhood
of p, we can have the directional derivative of f in the direction
v:

Dvf = a
∂f

∂x
(p) + b

∂f

∂y
(p) + c

∂f

∂z
(p). (1.1)

In fact, given any tangent vector v = (a, b, c), not necessarily a unit
vector, we still can define an operator on the set of functions which are
differentiable in open neighbourhood of p as in (1.1)

Thus we can take the viewpoint that each tangent vector of R3 at p
is an operator on the set of differential functions at p, i.e.

v = (a, b, v)→ a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
|p,

or simply

v = (a, b, c)→ a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
(1.2)

with the evaluation at p understood. The set TpR3 of such tangent
vectors is a three-dimensional vector space. If we choose

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)
1



2 WEI-PING LI

as a basis of the tangent space TpR3, under our new viewpoint, e1, e2

and e3 correspond to operators
∂

∂x
,
∂

∂y
and

∂

∂z
respectively. From

now on, we will take a viewpoint that TpR3 is a vector space with

basis
∂

∂x
,
∂

∂y
and

∂

∂z
and each element v ∈ TpR3 acts on differentiable

functions f at p as (1.1).

1.2. Cotangent Vectors and Total Differential. Given a vector
space V , we have the dual space V ∗ defined as the vector space of
linear transformations from V to R:

V ∗ = {L : V → R |L is a linear transformation}.

Given a basis e1, . . . , en of V , there is a dual basis e1
∗, . . . , en

∗ of V ∗

defined as

ei
∗(ej) = δi,j.

Now let’s apply the concept of linear algebra above to the vector
space TpR3. For the convenience of notations, we use (x1, x2, x3) to
denote the coordinates of R3. We get the dual space, denoted by T ∗pR3,

called the cotangent space of R3 at p. Vectors in T ∗pR3 are called

cotangent vectors. If we choose the basis
∂

∂x1
,
∂

∂x2
and

∂

∂x3
of TpR3,

its dual basis is denoted by dx1, dx2, dx3, i.e.,

dxi

(
∂

∂xj

)
= δi,j.

For a function f differentiable at p, we can define a cotangent vector
at p by

df |p
(
a
∂

∂x1
+ b

∂

∂x2
+ c

∂

∂x3

)
=

(
a
∂f

∂x1
(p) + b

∂f

∂x2
(p) + c

∂f

∂x3
(p)

)
.(1.3)

In terms of the basis dx1, dx2, d3,

df |p =
∂f

∂x1
(p)dx1 +

∂f

∂x2
(p)dx2 +

∂f

∂x3
(p)dx3. (1.4)

This has exactly the same form of the total differential we learned
in Calculus. In textbooks of Calculus, dx1, dx2 and dx3 are called
symbols representing “THINGS” that are infinitesimal small, and dxi
is the “limit” of ∆xi when ∆xi goes to zero. Similarly for the total
differential. In Calculus, we have

∆f =
∂f

∂x1
(p)∆x1 +

∂f

∂x2
(p)∆x2 +

∂f

∂x3
(p)∆x3 +R,
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where R is a remainder going to zero as ∆xi goes to zero if f is differ-
entiable at p. When ∆xi goes to zero, we are told that we get the total
differential

df |p =
∂f

∂x1
(p)dx1 +

∂f

∂x2
(p)dx2 +

∂f

∂x3
(p)dx3.

But when ∆xi goes to zero, everything above is zero, isn’t it? Clearly
dxi and the total differential are not properly explained in textbooks
of Calculus.

All the discussions above can be done on Rn.
From the discussions in this subsection, we see that just using the

new viewpoint of tangent vectors as in (1.2), the concept of dual spaces
in linear algebra, and the definition (1.4), all these ambiguously defined
dxi and the total differential are defined precisely.

1.3. Vector Fields and Differential 1-Forms. In Calculus, a vector
field on R3 is a vector valued function v(x) = (f(x), g(x), h(x)) rep-
resenting a tangent vector at the point (x). Using our new viewpoint
(1.1), the vector field can be represented by

f(x)
∂

∂x1
+ g(x)

∂

∂x2
+ h(x)

∂

∂x3
.

Similarly, we can also have cotangent vector fields.

f(x)dx1 + g(x)dx2 + h(x)dx3

represents a cotangent vector at the point x. Thus if f is a differentiable
function in an open set U ∈ R3, the expression (1.4) gives a cotangent
vector field on U

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3. (1.5)

Cotangent vector fields are called 1-forms. Thus (1.5) is a 1-form.

1.4. Multi-linear Algebra and Exterior Algebra of Grassmann.
Given a vector space V , a multi-linear map T from V k = V × . . .× V︸ ︷︷ ︸

k

to R is a linear transformation in each variable, i.e.,

T (v1, . . . , avi + bui, . . . ,vk)

=aT (v1, . . . ,vi, . . . ,vk) + bT (v1, . . . ,ui, . . . ,vk).

There are many such multi-linear maps in Calculus and Linear Algebra,
such as the dot product (or inner product) and the determinant. The
determinant of an n× n matrix can be regarded as a multi-linear map
from n copies of Rn to R where the i-th column vector of the matrix
is considered as an vector in i-th copy of (Rn)n.
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Multi-linear maps can be described via the language of tensors due
to the following universal property of tensor product. Given two vector
spaces V and W , there exists a vector space V ⊗W , called the tensor
product of V and W , together with a multilinear map ψ : V ×W →
V ⊗W , with the following universal property that for any vector space
Z and any multilinear map ϕ : V ×W → Z, there exists a unique linear
map from f : V ⊗W → Z such that ϕ = f ◦ψ. From this definition, we
can see that the tensor product is unique up to a unique isomorphism.

We can also define the tensor product via the direct construction:
V ⊗W is the vector space generated by symbols (v, w) for v ∈ V and
w ∈ W quotient out the subspace generated by (v + v′, w) − (v, w) −
(v′, w), (v, w+w′)−(v, w)−(v, w′), (av, w)−a(v, w) and (v, aw)−a(v, w)
for v, v′ ∈ V , w,w′ ∈ W and a ∈ R.

Given vector spaces V1, . . . , Vk, we can also define similarly the tensor
product V1⊗ . . .⊗ Vk. For a vector space V , we use V ⊗k to denote the
k-fold tensor product of V with itself k times. Given a basis e1, . . . , en
of V , V ⊗k has a basis ei1 ⊗ . . . eik for 1 ≤ i1, . . . , ik ≤ n. An element in
V ∗⊗k gives a k-fold multilinear map on V as follows. Let {e∗i } be the
dual basis in V ∗ of the basis {ei} of V , e∗i1⊗ . . . e

∗
ik

defines a multilinear
map on V :

e∗i1 ⊗ . . . e
∗
ik

(v1, . . . , vk) = e∗i1(v1) · . . . · e
∗
ik

(vk), for v1, . . . , vk ∈ V .

One can verify that the vector space of multilinear maps from V k to R
is isomorphic to the the vector space V ∗⊗k.

Among multilinear maps on V , there is a special kind of multilinear
maps, called alternating linear maps, defined by

T (v1, . . . , vi, . . . , vj, . . . , vk) = −T (v1, . . . , vj, . . . , vi, . . . , vk).

The determinant is a such map. There is an operation changing a
multilinear map T to an alternating linear map as follows:

Alt(T )(v1, . . . , vk) =
1

k!

∑
σ∈Sk

sign(σ)T (vσ(1), . . . , vσ(k)),

where Sk is the symmetric group on k letters. One can compare the
expression on the right with the definition of determinants.

Let ΛkV to represent the vector space of all k-fold alternating mul-
tilinear maps on V , we can define a wedge product as follows: let
T ∈ ΛkV and S ∈ Λ`V ,

T ∧ S =
(k + `)!

k! · `!
Alt(T ⊗ S).
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We can check that the wedge product is multilinear and anti-commutative:

T ∧ S = (−1)k`S ∧ T.

ΛkV has dimension
n!

k! · (n− k)!
since it has a basis

{ei1 ∧ . . . ∧ eik | 1 ≤ i1 < . . . < ik ≤ n}.

Thus ΛkV = 0 if k > n, ΛnV ∼= R with a basis e1 ∧ . . . ∧ en, and
Λ0V = R by convention. Therefore the vector space

ΛV = Λ0V ⊕ Λ1V + . . .⊕ ΛnV

is an algebra with the wedge as the product, called the exterior algebra,
or Grassmann algebra.

1.5. Differential Forms and Exterior Derivatives. After a brief
excursion to the garden of linear algebra, let’s come back to the palace
of Calculus.

Let V be the tangent space TpRn of Rn at any point p with basis

{ ∂
∂xi
} and V ∗ be the cotangent space with basis {dxi}.

ω(p) =
∑

1≤i1<...<ik≤n

fi1...ik(p)dxi1 ∧ . . . ∧ dxik

is an element in ΛkV ∗. When p varies in an open set U of Rn, fi1...ik ’s
are functions of p. It can also regarded as a section of the map∐

p∈U

T ∗pRn → U. (1.6)

If fi1...ik ’s are differentiable, ω is called the differential k-form on U .
There is wedge product on forms. Given a k-form ω and a `-form η

on U , we can have ω ∧ η which is a k+ `-form and ω ∧ η = (−)k`η ∧ω.
We can also define the exterior derivative d on k-forms to get (k+1)-

forms:

dω =
∑

1≤i1<...<ik≤n

dfi1...ik ∧ dxi1 ∧ . . . ∧ dxik . (1.7)

One can check that the exterior derivative satisfies Leibniz rule,

d(ω ∧ η) = dω ∧ η + (−)kω ∧ dη,

and

d ◦ d = 0.
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The last one can be seen through a simple example. Let f be a
smooth function on R2 with coordinates x, y. We have

df =
∂f

∂x
dx+

∂f

∂y
dy.

ddf = d
∂f

∂x
∧ dx+ d

∂f

∂y
∧ dy

=
∂2f

∂y∂x
dy ∧ dx+

∂2f

∂x∂y
dx ∧ dy

= (− ∂2f

∂y∂x
+

∂2f

∂x∂y
)dx ∧ dy

= 0.

We see that dd = 0 is due to the known fact in Calculus that the
multiple partial derivatives of smooth functions are independent of the
order of partial differentiations.

Let’s come back to Calculus and see how our differential forms and
exterior differentiations are related to known quantities and operations
there.

Consider a 1-form ω1, a 2-form ω2, and a 3-form ω3 on an open subset
U of R3 with coordinates x1, x2, x3.

ω1 = f1dx1 + f2dx2 + f3dx3, (1.8)

ω2 = g1dx2 ∧ dx3 + g2dx3 ∧ dx1 + g3dx1 ∧ dx2, (1.9)

ω3 = fdx1 ∧ dx2 ∧ dx3. (1.10)

dω1 = df1 ∧ dx1 + df2 ∧ dx2 + df3 ∧ dx3 (1.11)

=
∂f1
∂x2

dx2 ∧ dx1 +
∂f1
∂x3

dx3 ∧ dx1 +
∂f2
∂x1

dx1 ∧ dx2 +
∂f2
∂x3

dx3 ∧ dx2

+
∂f3
∂x1

dx1 ∧ dx3 +
∂f3
∂x2

dx2 ∧ dx3

= (
∂f3
∂x2
− ∂f2
∂x3

)dx2 ∧ dx3 + (
∂f1
∂x3
− ∂f3
∂x1

)dx3 ∧ dx1 + (
∂f2
∂x1
− ∂f1
∂x2

)dx1 ∧ dx2

If we identify the 1-form (1.8) with the vector field

v = f1
∂

∂x1
+ f2

∂

∂x2
+ f3

∂

∂x3
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and the 2-form (1.9) with the vector field

u = g1
∂

∂x1
+ g2

∂

∂x2
+ g3

∂

∂x3
,

then we can see that the 2-form dω1 corresponds to the curl of the
vector field v, i.e., curl(v).

dω2 = dg1 ∧ dx2 ∧ dx3 + dg2 ∧ dx3 ∧ dx1 + dg3 ∧ dx1 ∧ dx2

=
∂g1
∂x1

dx1 ∧ dx2 ∧ dx3 +
∂g2
∂x2

dx1 ∧ dx2 ∧ dx3 +
∂g3
∂x3

dx1 ∧ dx2 ∧ dx3

=

(
∂g1
∂x1

+
∂g2
∂x2

+
∂g3
∂x3

)
dx1 ∧ dx2 ∧ dx3. (1.12)

If we identify ω3 with the function f , then the 3-form dω2 above
corresponds to div(u).

Given a differentiable function g, gradient of g

grad(g) =
∂g

∂x1

∂

∂x1
+

∂g

∂x2

∂

∂x2
+

∂g

∂x3

∂

∂x3

is identified with the 1-form

dg =
∂g

∂x1
dx1 +

∂g

∂x2
dx2 +

∂g

∂x3
dx3

by the previous rule of the identification of forms with vector fields.
Now we see that differential operators in vector calculus such as

grad, curl,div are all one single exterior differentiation d.

1.6. Smooth Manifolds. We have encountered circles in the plane
or the space, and spheres in the space in calculus. The way we study
them is via parameterizations. In fact, these are examples of compact
manifolds. The very definition of manifolds is hidden implicitly in
textbooks of Calculus.

In Calculus, on R1,R2 and R3, we can do differentiations and in-
tegrals of functions and vector fields since the Euclidean spaces have
coordinates. But to find tangent vectors of circles and spheres and do
the line integral on circles and the surface integral on surfaces, we need
the aid of parameterizatoins to provide coordinates. And very often we
need several parameterizations, for example, spheres need more than
one parameterizations. The key of the paramerterizations is that, for
a sphere for example, they give identifications of some open subsets of
the shpere with open sets in R2. Or loosely speaking, the sphere is
locally isomorphic to an open subset of R2.
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Example 1.1. Consider two parameterizations of the unit sphere S
given by x2 + y2 + z2 = 1,

z+(u, v) = (u, v,
√

1− u2 − v2) : W1 = {(u, v) |u2 + v2 < 1} → S,

U1 = z+(W1);

x+(s, t) = (
√

1− s2 − t2, s, t) : W2 = {(s, t) |s2 + t2 < 1} → S,

U2 = x+(W2).

In the intersection z−1+ (U1 ∩ U2), we can consider, for u > 0,

x−1+ ◦ z+(u, v) =
(
s(u, v), t(u, v)

)
= (v,

√
1− u2 − v2), (1.13)

called the transition function.
Clearly s(u, v) and t(u, v) are differentiable functions of u, v. The

determinant of the Jacobian matrix of the transition function (1.13) is

∂s

∂u
· ∂t
∂v
− ∂s

∂v
· ∂t
∂u

= − −2u

2
√

1− u2 − v2
=

u√
1− u2 − v2

.

�

How do we define a differentiable function on S in Caculus? For
example, in Calculus we say a function f on U1∩U2 ⊂ S is differentiable
if there exists a differentiable function F on an open neighbourhood
V of U1 ∩ U2 in R3 such that f = F |U1∩U2 . This definition needs the
ambient space R3 of the sphere S. In fact, we don’t need the help of the
ambient space, but using parameterizations as follows. We can use the
paramerterization x+ to define f differentiable if f ◦x+ is differentiable
as a function of s, t. However, there is another parameterization z+.
Could it be that f ◦z+ is not a differentiable function of u, v? If it were,
this approach would depend on parameterizations and thus should be
rejected as a definition. Fortunately, due to the change rule,

f ◦ z+ = (f ◦ x+) ◦ (x−1+ ◦ z+)

is differentiable.
Now we can say a manifold X is, just like the sphere, a topological

space locally identified with an open subset of Rn via the parameter-
izations. If we want more properties of X, we can add requirements
of the parameterizations. For example, if we want to define smooth
functions on X without the help of an ambient Euclidean space, we
just require that transition functions of the parameterizations are all
smooth due to the Chain Rule in Calculus.
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Definition 1.2. Let X be a topological space with countable bases
and Hausdorff. X is said to be a smooth manifold if there exists a
covering {Ui} of X together with maps ϕi : Ui → Rn such that ϕi
is a homeomorphism from Ui to the open subset ϕi(Ui) of Rn and
ϕi ◦ ϕ−1j : ϕj(Ui ∩ Uj) ⊂ Rn → ϕi(Ui ∩ Uj) ⊂ Rn is a smooth map. If
{x1, . . . , xn} is a coordinate system for Rn, then it is also called a local
coordinate system for Ui (or X). xk(ϕi) is a function on Ui, by abuse
of notation, denoted also by xk.

If X is connected, the dimension of X is defined to the number n
above.

Clearly, the inverse ϕ−1i of ϕi in the definition is a parameterization
we saw in Calculus and discussed above.

Example 1.3. Consider the real projective space RP2 defined as fol-
lows.

RP2 = {one dimensional subspaces of R3}.
Since a line passing through the origin in R3 is determined by a non-
zero directional vector and two non-zero vectors give the same line if
and only if they are proportional, we can write RP2 in another way:

RP2 = R3 − {0}/

where the equivalence relation is that (a1, a2, a3) is equivalent to (b1, b2, b3)
if and only if (a1, a2, a3) = λ(b1, b2, b3) for λ 6= 0. Thus we can write

RP2 = {[x1, x2, x3] | [x1, x2, x3] = [λx1, λx2, λx3]

for λ 6= 0, (x1, x2, x3) 6= 0}.

There is clearly a map

π : R3 − 0→ RP2, π((x1, x2, x3)) = [x1, x2, x3].

We give RP2 the quotient topology, i.e., a set U ∈ RP2 is defined to be
an open set if π−1(U) is an open subset of R3 − 0.

We use coordinate charts on RP2 as follows. Let U1 = {x1 6= 0} ⊂
RP2. We define a map

ϕ1 : U1 → R2, [x1, x2, x3]→ (
x2
x1
,
x3
x2

) ∈ R2.

We can define similar coordinate charts ϕ2 : U2 = {x2 6= 0} → R2 and
ϕ3 : U3 = {x3 6= 0} → R2. One can check that ϕi is a homeomorphism.
Let’s check the transition functions. For example,

ϕ2 ◦ ϕ−11 : R2 − {0} → R2 − {0},
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(x, y)→ [1, x, y] = [
1

x
, 1,

y

x
]→

(
1

x
,
y

x

)
.

Clearly this map is a smooth map. Thus RP2 is a smooth manifold.
Consider the sphere S : x21 + x22 + x23 = 1. We have a surjection

map π|S : s → RP2. Since the sphere S is compact and the map π|S
is continuous, the real projective space RP2 is compact. For a point
(x1, x2, x3) ∈ S, (λ · x1, λ · x2, λ · x3) ∈ S if and only if λ = ±1. Thus
S is a double cover of RP2.

How do we define tangent vectors on a smooth manifold?
Assume X is an n-dimensional smooth manifold smoothly embedded

in RN and ϕ−1’s is a smooth parameterization of an open subset U of
X. Then the tangent space of U at a point p is generated by tangent
vectors

∂ϕ−1

∂x1
, . . . ,

∂ϕ−1

∂xn
.

If (y1, . . . , yN) is a coordinate system on RN , and we write

ϕ−1(x1, . . . , xn) =
(
f1(x1, . . . , xn), . . . , fN(x1, . . . , xn)

)
,

then we have
∂ϕ−1

∂xi
=

(
∂f1
∂xi

, . . . ,
∂fN
∂xi

)
,

which can also be written as, if we regard the tangent vector as an
operator on differential functions,

∂f1
∂xi

∂

∂y1
+ . . .+

∂fN
∂xi

∂

∂yN
. (1.14)

Given a smooth function g on U , we have(
∂f1
∂xi

∂

∂y1
+ . . .+

∂fN
∂xi

∂

∂yN

)
· g =

∂f1
∂xi

∂g

∂y1
+ . . .+

∂fN
∂xi

∂g

∂yN

=
∂g ◦ ϕ−1

∂xi
by the chain rule.

We define differential operators
∂

∂xi
acting on differential functions

g on U by (
∂

∂xi

)
(g) =

∂g ◦ ϕ−1

∂xi
. (1.15)

Comparing (1.14) and (1.15), we see that

∂

∂xi
=
∂f1
∂xi

∂

∂y1
+ . . .+

∂fN
∂xi

∂

∂yN
.
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Thus if we regard tangent vectors as differential operators, the tangent
space TpX is a vector space spanned by the tangent vectors

∂

∂x1
, . . . ,

∂

∂xn
(1.16)

for all p ∈ U .
The advantage of this viewpoint is that the definition of tangent

vectors of a smooth manifold doesn’t need the ambient Euclidean space
RN and hence can be used as the definition of an arbitrary smooth
manifold.

We can define the concept of smooth maps between smooth man-
ifolds. Given a map F : M → N between two smooth manifolds M
and N . We say F is smooth if for every point p ∈ M , a coordi-
nate chart ϕ : U → Rm of an open subset U containing p, and a
coordinate chart ψ : V → Rn of an open subset V containing F (p)
such that U ⊂ F−1(V ), the map ψ ◦ F ◦ ϕ−1 is a smooth map from
ϕ(U) ⊂ Rm → Rn.

1.7. Tangent Bundles and Cotangent Bundles. In Calculus, for
curves in the plane R2 and surfaces in R3, we learned the concept of
tangent lines of curves and tangent planes of surfaces. For example, for
a smooth surface S in R3, for each point p ∈ S, we have the tangent
plane TpS consisting of tangent vectors of S at p. If we vary the point
p, we get a subset TS of R3 × R3 with a map π to S

π : TS =
∐
p∈S

TpS = {(p,v) ∈ R3 × R3 | p ∈ S,v ∈ TpS} → S.

The map π maps a tangent vector v at p to the point p. Clearly each
fiber π−1(p) is a vector space.

We can do the same for arbitrary n-dimensional smooth manifold X
to get a set

TX =
∐
p∈X

TpX,

called the tangent bundle together with a natural map π : TX → X
mapping TpX to p. Clearly each fiber π−1(p) = TpX is a vector space.
Furthermore, we can give a smooth manifold structure to TX as fol-
lows. Let ϕ : U → Rn be a coordinate chart of X. Let x1, . . . , xn be
a coordinate system on Rn. At each point p of U , based upon the
discussion of the basis (1.16) in §1.6, we can choose a basis of TpX:

∂

∂x1
, . . . ,

∂

∂xn
.
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Thus we can define a coordinate chart of π−1(U) = TX|U :

Φ: π−1(U)→ Rn×Rn,

(
p, a1

∂

∂x1
+. . . an

∂

∂xn

)
→
(
ϕ(p), (a1, . . . , an)

)
.

We can give the topology to TX such that W is an open subset of TX
iff Φ

(
W ∩ π−1(U)

)
is open for every U .

Φ|p, the restriction of Φ on the fiber of π over p ∈ X, is clearly an
isomorphism of vector spaces.

We can check that TX is a smooth manifold. In fact, let ψ : V ⊂
X → Rn be another coordinate chart with y1, . . . , yn as the coordinates
of Rn. We have the corresponding coordinate chart for π−1(V ):

Ψ: π−1(U)→ Rn×Rn,

(
p, b1

∂

∂y1
+. . . bn

∂

∂yn

)
→
(
ψ(p), (b1, . . . , bn)

)
.

Let’s write

ψ ◦ ϕ−1(x1, . . . , xn) =
(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)
.

Let g be a differential function on U ∩ V ,(
∂

∂xi

)
g =

∂g ◦ ϕ−1

∂xi
=
∂
(
(g ◦ ψ−1) ◦ (ψ ◦ ϕ−1)

)
∂xi

=
∂f1
∂xi

∂g ◦ ψ−1

∂y1
+ . . .

∂fn
∂xi

∂g ◦ ψ−1

∂yn
.

=

(
∂f1
∂xi

∂

∂y1
+ . . .

∂fn
∂xi

∂

∂yn

)
g.

Thus we get the transformation formula for different bases of the
tangent space TpX for p ∈ U ∩ V :

∂

∂xi
=
∂f1
∂xi

∂

∂y1
+ . . .

∂fn
∂xi

∂

∂yn
. (1.17)

Thus we get b1
...
bn

 =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

...
∂fn
∂x1

· · · ∂fn
∂xn

 ·
 a1

...
an

 .

We can use Jac(ψ ◦ ϕ−1) to represent the n × n matrix above. Thus
the transition function Ψ ◦ Φ−1 is given by

Ψ ◦ Φ−1(p,v) =
(
ψ ◦ ϕ−1(p), Jac(ψ ◦ ϕ−1)(v)

)
,

and smooth.
If the surface S is the xy-plane in R3, then TS ∼= S × R2, i.e.,the

tangent bundle is the product of S with R2. We call such tangent
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bundle a trivial bundle. If we consider the sphere S : x2 + y2 + z2 = 1,
the tangent bundle TS won’t be a trivial bundle. However the tangent
bundle of the circle is a trivial bundle.

The tangent bundle of a smooth manifold has some properties shared
by many other manifolds, which are called a vector bundle. Let’s give
a definition of vector bundles.

Definition 1.4. Let X be a smooth manifold and E be another smooth
manifold with a smooth map π : E → X. E is called a vector bun-
dle if for each p ∈ X, the fiber π−1 is a vector space of dimension r
and there exists an open subset U containing p and a diffeomorphism
Φ: π−1(U)→ U×Rr such that Φ|q, the restriction to each fiber π−1(q),
is an isomorphism of vector spaces for every q ∈ U .

If we take dual of each fiber of a vector bundle E over X, we get a
dual vector bundle E∗ over X. The dual tangent bundle is called the
cotangent bundle, denoted by T ∗X.

A smooth section s of a vector bundle E over X is a smooth map
from X to E such that π ◦ s(p) = p, i.e., s maps p to a vector in the
fiber E|p of π over p. Thus we can see that a smooth vector field on
X is just a smooth section of the tangent bundle TX, and a smooth
1-form is just a smooth section of the cotangent bundle T ∗X.

We can also apply various constructions in linear algebra to vector
bundles. For example, we take i-th wedge product ∧iE of the vector
bundle E. The smooth sections of ∧pT ∗X are called smooth p-forms.
These are the extension of the concept of differential forms on Rn in
1.5 to manifolds.

One can also extend the exterior differentiations to manifolds. Can
you give a try? Do it locally, i.e., using local coordinate charts, then
prove that it is independent of the choice of charts.


