INTRODUCTION TO ALGEBRAIC GEOMETRY

WEI-PING LI

ABSTRACT. The materials are based upon essentially Griffiths-
Harris and Beauville’s book “Complex Algebraic Surfaces”.

1. COMPLEX MANIFOLDS

Let W be an open subset of C", z1,..., z, be the coordinates for C".

We write
0 1,0 ) 0 1,0 )
zi:xi—i—\/—l i —_— = = —\/—1 s — = — —|—\/—1 .
Let f(z1,...,2,) be a continuous function on W. A well-known fact
says that ifa—_ =0forall:=1,...,n, then for any a = (a4,...,a,) €
2
W, there exists ¢; > 0 for i = 1,...,n such that f = > ¢, k(21 —
ki >0

a)* ... (2, — a,)™ is a converging series for |z; — a;| < €. Such a

function is called a holomorphic function.
Write f(z1,...,2,) = u(z1,...,2,) + V—1v(z1, ..., 2,) where u and

v are real-valued functions on W. If

7z = 0, then we get the Cauchy-
Zi

Riemann equations for v and v:
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Hence w is a harmonic function on W and so is v.

Definition 1.1. Let X be a topological space with countable bases
and Hausdorff. X is said to be a complex manifold if there exists
a covering {U;} of X together with maps ¢;: U; — C" such that ¢,
is a homeomorphism from U; to the open subset ¢;(U;) of C" and
pio @ @i(U;NU;) € C" — ¢;(U; N U;) € C" is biholomorphic. If
{z1,...,2,} is a coordinate system for C", then it is also called a local
coordinate system for U; (or X). zx(¢;) is a function on U;, by abuse

of notation, denoted also by z.
1
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Example 1.2. Consider the Riemann sphere S? = P!,

One way to define P! is to regard it as the space of lines in C?
passing through the origin. Here is another way to define P!: P! =
{C? — {(0,0)}}/C* where C* acts on C? by k(z,y) = (kx,ky) for
k € C* and (z,y) € C?. Hence we can write

P! = {[z20, 21] | [20, 21] = [k20, k21] for k € C*, (20, 21) # (0,0)}

where [2g, 1] is called the homogeneous coordinates.

Let m: C* —{(0,0)} — P! be the quotient map. The topology on P*
is the induced quotient topology. Take two open subsets Uy and U; of
P!

UOZ{[Z(),Zl] €P1|Zo7é0}, Ulz{[ZO,Zl] €P1|217£0}.

we have homeomorphisms:
21 20

0o: Up = C, [20,21] vu=—; ¢1:U1—=C, |2,z —>w=—.
20 1

Hence over the overlap ¢o(Uy N U;) = C*, we have for u € C*,
1

w=piopy(u)=—~, u—[Luy=[l/ul]—1/u
u

Clearly o1 o ¢y (u) = 1/u is holomorphic on C*. Therefore P! is a
complex manifold. Take S% = {(z2¢,21) € C?||20|* + |21]* = 1}. S' =
{e®} acts on S? by the natural action. One can see that P! = §3/S.
Since S? is compact, P! is compact.

The following topological spaces are complex manifolds as well: C”,
open subsets of C", the projective space P* = {C"*! — (0,...,0)}/C*
where k- (20, 21, ..., 2n) = (k20, k21, ..., kz,) for k € C* | X x Y if both
X and Y are complex manifolds, C"/T" where I is a full rank lattice in
C", a subset of C" defined by Y = {(z1,...,2,) € C"| f(21,...,2,) =

0} where f is a holomorphic function on C" and rank of (

8—21, ceey a—zn)
1. The last example can be understood using the complex version of
the implicit function theorem.

Definition 1.3. Given a continuous function f on an open subset W of
X. f is said to be holomorphic if for any point p on X, there exists an
open neighbourhood U C W of p and a local coordinates p: U — C"
such that f o ¢™! is holomorphic. Let (z1,...,2,) € C" be a local

0 Of ot
coordinate on U, we define —f = f—ga

One can check that this definition is independent of the local coor-
dinates we choose.
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Proposition 1.4. A compact connected complex manifold X has no
global holomorphic functions other than constant functions.

Proof. Let f be a holomorphic function on X. Then the real part
u of f is a harmonic function on X. By the maximum principle for
harmonic functions, since X is compact, u is a constant. The same is
true for the imaginary part of f. Hence f is a constant. 0

As a corollary, any compact complex manifold of dimension bigger
than zero can never be embedded holomorphically in CV. For if not,
we can take a holomorphic function f on C" not constant on X. The
restriction of f to X would be a non-constant holomorphic function
on X, a contradiction. We know that any smooth compact manifold
X can be smoothly embedded in some RY and there are lots of global
smooth non-constant functions on X.

Let’s come back to the projective space P". P" can be regarded as a
compactification of C" as follows. P" has some open subsets

Ui = {[20, 21, .-, 2a) € P"| 2; # 0}

for i = 0,...,n. All these open subsets are biholomorphic to C", for
example,
n 2! Zn n
0: U= C"  o(lz0,---,2)) =(—,...,—) € C".
20 20

The complement of Uy is
P — U() = {[0, 21 ,Zn] € ]Pm} = Pnil.

Therefore , if we identify C" with Uy by (21, ...,2,) € C" = [1, 21, ..., 2,),
then the set of infinities, i.e., P — Uy, is the space of lines on C™ passing
through the origin.

Example 1.5. Consider the curve Y C C?, Y = {(z,y) € C?)|zy =
1}. One can show that it is a (non-compact) complex manifold of
dimension one. Take a compactitication of C? as C? — U, C P2
(z,y) — [1,z,y]. For the homogeneous coordinates [z, 21, 23] of P2,
we choose a homogeneous polynomial F'(z, 21,22) = 2129 — zg. Let
Y = {[20, 21, 22] € P?| F(29, 21, %) = 0}. Clearly Y is a closed subset
of P? even though F is not a well defined function on P2. Y N U, =
{[20, 21, 22] € P? |29 # 0,2122 — 25 = 0} is isomorphic to Y by taking
T = 21/20, Yy = 22/ 20
The intersection Y with the set of infinities is

YN(P*~Up) = {[20, 21, 21] €P?| 20 = 0, 2120 = 25} = {[0,0, 1]}U{[0, 1, 0]},

the two points which represent two “asymptotic” directions of Y in C?,
i.e., z-direction and y-direction.
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In general, a homogeneous polynomial F' on P" is not a well defined
function on P", but the closed subset

Y:{[20721>"'72n] EP”‘F(Z(),ZD...,Z”):O}

is well defined and is a codimension one hypersurface. The function
f(z1,...,20) = F(1,21,...,2,) is a polynomial on C* = U, and the
zero locus of £, Y = {(z1,...,2:) | f(z1,...,2,) = 0)}, is Y N Up.
Conversely, for a polynomial f(zq,...,z,) of degree d on C", e.g.,
f(z1,22) = 2129 — 1, we can homogenize it to get a homogeneous poly-
nomial F(zg,21,...,2,) of degree d and Y = Y NUy, e.g., F = z12p— 22.
Y is a compactification of Y.

Definition 1.6. A projective variety X is a closed subset of P" defined
as

X ={[z0,21,---,2n) EP" | Fi(20,...,20) =0,..., Fx(20,...,2,) =0}

where FY, ..., F} are homogeneous polynomials on P".
An open subset U of X is called an algebraic quasi-variety. X is said
to be nonsingular or smooth if it is a complex manifold.

Example 1.7. Let’s look at two examples of singular curves.
Let X = {[z0, 21, 22] € P?| F(20, 21,22) = 2} — 2529 = 0}. Consider
XNUy = {(x,y) € C*|2® = y*}. Let f(x,y) = F(1,z,y). Then

% = 327 and ? = —2y. Clearly X is singular at the point [1,0,0].
€z Y

This singular point is called a cusp.

Let Y = {[20,21,22] € P?|F(20,21,22) = 2320 — 23(21 + 20) =
0)}. Consider Y N Uy. Let f(x,y) = F(1,z,y) = y* — 2%(x + 1).
0 0
97 = —32% — 2z and of =2y. So [1,0,0] is a singular point of Y.
ox dy

This point is called an ordinary double point.

In the end, we list some results we won’t prove.

A theorem of Chow says that any compact complex submanifold of
P" is algebraic, i.e., it is the zero locus of some finitely many homoge-
neous polynomials on P”.

Let X be an algebraic variety. Define a new topology, called Zariski
topology, on X by defining a closed subset of X to be a subvariety
of X. Note that this topology is not Hausdorff. For example, take a
Riemann surface X. A closed subset of X in Zariski topology is a set
of finitely many points on X.
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2. MEROMORPHIC FUNCTIONS, DIVISORS AND LINE BUNDLES

Let X be a smooth algebraic variety, i.e., X is holomorphically em-
bedded in some P". let F' and G be two homogeneous polynomials over
P" of the degree d. Consider the quotient

F  k'F  F(kzo,... kz,)

LN for k € C*.
G RG " Gz, ke NS

F
Hence f = el is a well defined meromorphic function on P".

Example 2.1. Consider X = P!. Take F(29,21) = 27, G(20,21) =
20(z0 — 2z1). Let f = F/G. The zeros of f counted with multiplicity
are 2p where p = [1,0] and the pole of f counted with multiplicity are
¢1 and g2 where ¢; = [0,1] and ¢ = [1,1]. We use the symbol

(f) =2p—q1 — @,
called the divisor associated to f, to record the zeros and poles (counted
with multiplicity) of f. If g is another meromorphic function on X with
(9) = 2p—q1 — q2, then the meromorphic function f/g has no zeros and
no poles. Hence it is must be a holomorphic function which must be a
constant by the Theorem 1.4, i.e., f = ag for a constant a. Therefore
the divisor (f) determines the function f up to a multiple of a constant.

In general, for any meromorphic function f on a complex compact

k

manifold X, the divisor (f) = >  m;V; is a formal sum where V;’s are
i=1

codimension one subvarieties of X, f vanishes along V; with multiplicity

m; if m; > 0 and f has a pole along V; with multiplicity m; if m; < 0.

By the same argument as that of the example above, we see that the

divisor (f) determines the meromorphic function f up to a constant.
Now let’s give a definition of divisors in the most general context.

k
Definition 2.2. A divisor D on X is a formal sum D = > m;V; where
V.’s are codimension one subvarieties of X and m;’s are zinltegers.

A divisor in general is not (f) for some meromorphic function f on
X. For example, let X be P!, D = p; + py. If D = (f), then f would
be a holomorphic function on X since it has no poles and it is not a
constant since it vanishes only at the points p; and ps, a contradiction.

We define Div(X) to be the set of all divisors on X. Addition, minus
and the zero elmemnt can be defined on Div(X) as follows:

(i) Addition: for D = Y m;V;, D" = Y m/V}, define D + D" =
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(ii) Minus: —D = > (—m,;)V;.
(ili) Zero element: D = (1).
We can check that Div(X) is an abelian group. Note that

9= +@. —()= <§>

for meromorphic functions f, g on X.
Here comes a question:

Question 2.3. What does a general divisor represent?

In order to answer the question, we take a different look at divisors.
Given a divisor D = > m,;V;, for any point p on X, choose a neigh-
bourhood U of p such that there exists a meromorphic function f on
U with UN D = (f). Hence we can get an open covering {U,} of X
together with a collection of meromorphic functions f, over U,. Such

a collection is also called a Cartier divisor. Then g,z = f—a is a non-
B

vanishing holomorphic function on U, N Us. ¢,s’s satisfy the following
properties:

Gap = gﬂ_; on Uy NUs,  9gapgsy9ya = 1 on U, NUzNU, (2.1)

If one knows the theory of vector bundles, one sees that the collection
{Ua, fa} defines a (complex) line bundle on X.

Exercise 2.4. Any Cartier divisor defines a divisor D in the sense of
the Definition 2.2.

Definition 2.5. Let X be a complex manifod. A topological space F
with a continuous map 7 to X, called a projection, is a holomorphic (or
complex) vector bundle over X if for any point p € X E|, is a complex
vector space and there exists an open covering {U,} of X such that
(i) there exists a homeomorphism ¢, : El|y, = 7~ 1(U,) — U, x C"
such that ¢,|,: E|, — p x C" is an isomorphism of complex
vector spaces.
(i) gas(2) = @a 0 @5 lexcr: X C" — 2z x C7, called the transition
function, is a holomorphic map from U, N Us to GL(r,C).

Yo' Elu, — Uy xC" is called a trivialization of E over U,, r is called
the rank of E. One can check that g,s’s satisfy (2.1).

Conversely, given an open covering {U,} of X and a collection of
gap’s which are holomorphic maps from U, N Uz to GL(r, C) satisfying
(2.1), we can construct a holomorphic vector bundle E over X:

E=][U.xC/~



AG 7
where (z,v,) ~ (y,vs) if and only if x = y and v, = gapvs.

Exercise 2.6. Show that such E above is a well defined holomorphic
vector bundle over X.

Recall that given a divisor D, we get a Cartier divisor {U,, fa}.
9op = fa/fs is a nonvanishing holomorphic function on U, N Uz sat-
isfying (2.1). Hence by the discussion above, we get a (holomorphic)
line bundle, denoted by [D]. In fact, we get something more. We can
also get a meromorphic section of [D] whose associated divisor is D.

Definition 2.7. Given a line bundle L. Let s be a holormorphic section
of the projection 7: L — X away from a codimension one subvariety
such that for each p € X there exist a neighbourhood U of p and a
trivialization ¢: L|y — U x C such that ¢(s)(z) = (x, f(x)) where f
is a meromorphic function over U.

Given a Cartier divisor D = {U,, f,}, there exists a “canonical”
meromorphic section s of [D] defined as follows: for the trivialization
o [D)|lv, = Ua x C, s(x) = ;' (, fu(z)) for z € U,. One can check
that s is a globally defined meromorphic section of [D].

For a meromorphic section s of a line bundle L. we can define a divi-
sor D associated to s, denoted by (s), as follows: take local trivializa-
tions of L over X, ¢, : L|y, — Uy X C. Let po(s)(z) = (2, fa(x)). fois
a moremorphic function over U,. One can check that f,/fs = gpaocpgl.
Hence f,/fs is a nonvanishing holomorphic function over U, N Ug.
Therefore {U,, fa} is a Cartier divisor.

Now we can conclude that there is a one-to-one correspondence be-
tween the set of divisors D (equivalently Cartier divisors) and the set
of line bundles L with meromorphic sections s up to a constant. In
another word, a divisor D corresponds to a meromorphic section s of
the line bundle [D].

Define Pic(X) to be the set of (holomorphic) line bundles over
X modulo bundle isomorphisms. Pic(X) is a multiplicative abelian
group:

(i) Multiplication: given L and L' in Pic(X), L ® L' is the mul-
tiplication. If {gag,Us} and {g;,5, Us} are transition functions
of L and L' respectively, then {g.sg,5,Us} are the transition
functions of L ® L.

(ii) Inverse: Given L € Pic(X), the inverse of L, denoted by L*, is
the dual bundle Hom(L,C). The transition functions of L* are
{903 Ua}-

(iii) Unit element: the trivial line bundle is the unit element.
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Now we get a map
[ ]: Div(X) — Pic(X). (2.2)

One can check the map [ ] is a homomorphism of groups.

A deep theorem of Lefschetz on (1,1)-classes implies that the map
[ ] is surjective when X is a projective manifold, i.e., X is holomor-
phically embedded in some projective space as a closed complex sub-
maniifold .

The next question is what the kernel of [ | is.

Let D = {U,, fo} be a Cartier divisor such that [D] = X x C.
There exist trivializations ¢,: [D]|y, — U, x C and the transition
functions are ¢, o gogl = fa/fs. Take a nonzero trivial section s of
[D] = X x C. Under the map ¢,, va(s)(x) = (z,9.(z)) for x €
U,. Similarly ¢g(s)(z) = (x,gs(z)). Both g, and gs are holomorphic
and nonvanishig. Therefore we have g,(x) = @, © g&gl‘zxc(glg(fl})) =

égg. Hence over U, N Ug, Ja = E, ie., {E} is a globally defined
G

f B Ja 9s
meromorphic function f on X and D = (f). One can also check easily

that if D = (f), [D] is a trivial line bundle. Therefore we get the
kernel of the map | | is the set of global meromorphic functions on
X and Pic(X) = Div(X)/Ker[ ]. This gives arise to the following
definition.

Definition 2.8. Given two divisors D and D’ on X. D and D’ are said
to be linearly equivalent, denoted by D ~ D', if there exists a global
meromorphic function f on X such that D = D’ + (f). Equivalently,
D ~ D' if and only if [D] = [D'].

Now we can give a complete answer to the Question 2.3: a divisor
D corresponds to a line bundle [D] with a meromorphic section s and
vice versa. The section s can be regarded as a “twisted” meromorphic
function. A meromorphic function f corresponds to a “special” divisor
linearly equivalent to 0 which corresponds to the trivial line bundle
with the meromorphic section given by f.

Let’s look at several examples.

Example 2.9. Universal line bundle on P".
Consider a subset L C P" x C"tl:

L = {([ZO,...,Zn],<£07.”7£n)) c P" x Cn+1|
(lo, ..., 0n) = k(z0,...,2,) for some k}
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with the projection to the first factor 7: L — P™. Define
;. L|U1 — U; X C, ([20, . ,Zn], (fo, R 7£n)) — ([Zo, ey Zn];gz)

One can check that this is an isomorphism of vector spaces on each

Zi
fiber. Over U; N U; gij = ;0 goj_l([zo, o Znly 4G) = ([0, - -y 2n), —45).
<j
Zi . .
Hence the transition functions are {—, U; N U;}. Therefore L is a line
24

bundle, called the universal line bundjle.

so([z05 - 2n]) = ([20,- - -, 2a), (1, ﬁ, ce Z—n)) is a meromorphic sec-
2 20
tion of L whose associated divisor (sg) = —H where H is the hyper-

plane H = {2y = 0} in P". Hence L = [—H]. The line bundle [H],
which is the dual of [—H], is called the hyperplane line bundle.

Example 2.10. Canonical line bundle.

Let X be a complex manifold of complex dimension equal to n, T%
be the holomorphic cotagent bundle of X. Define the canonical line
bundle Ky = A"T%.

On P", over Uy, wy = d(ﬁ) AN d(z—n) is a nonvanishing holomor-

z z

phic n-form, hence provides a trivialization of Ky over Uy,

vo: Kx|v, = Up x C, f(p)wo — (p, f(p))

where f is a holomorphic function on Uj.

2 2 2
Similarly, over Uy, w; = —d(=2) A d(Z2) A ... A d(Z2) provides a
Z1 21 Z1
trivialization of Kx over Uy,

¢1: Kx|o, = Uy x C, g(p)wr — (p,9(p))

where g is a holomorphic function on U;. Now we have

W = —d(?) A d(?) A A d('z—")
~d(z1/20) 29/ 20 Zn/ 20
I Ad(zl/z()) /\.../\ol(Zl/Z0
S QL) o)
- (?)”“d(?)/\.../\d(%
= ()i

21
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20

Hence the transition function go; = (=)
2

. Similarly we can obtain

1
the other transition functions g;;. Compare this with the previous
Example 2.9, we see that Kx = [~ H | = [—(n + 1)H].

Example 2.11. Adjunction formula.

Let X be a complex manifold of dimension n, V' C X be a codimen-
sion one submanifold of X. We have the following exact sequence of
vector bundles

O—)Tv—>Tx|V—>Nv/X—>O
where Ny, x is the normal bundle of V' in X. Take the dual of the exact
sequence, we get

0—>N{;/X—>T;}|V—>T{§—>O

where N‘*// + is called the conormal bundle of V' in X.

Choose an open covering {U,} of X such that, over each U,, V NU,
is given by the zero locus {f, = 0} of some holomorphic function f,
defined over U,. Then df,|yny, is a non-vanishing holomorphic section
of N‘*//X. One way to see this is to choose a local coordinates zq, ..., 2,

in U, such that V NU, = {z; = 0}. Hence dz,...,dz, is a basis for
T%|v., dza, ... ,dz, is a basis of T{|y,, dz; is a basis of Ny x and we
take f, = z1.
Now dfs|vru, provides a local trivialization of Ny, /X
Po: NX*//Xan — Uq X Cu gcx(p)dfa'V - (p’ ga(p))'
When restricted to V', we get

Afly = (22 )l = d<%>rv Salv + L2l d(f)ly = Ly d(f)l

Hence ¢, = (—B\V)g[g, Le., the transition function for Ny, over
(63

U,NUg is ﬁh/ which is also the transition functions for the line bundle

[=V1lv. Therefore Ny, = [=V]|y. Since A" (Tx|v) = (A"'Ty) ®
Ny, /x> we get the so called adjunction formula
Ky = (Kx @ [V])|v. (2.3)

Sometimes people use Kx to denote a divisor corresponding to the
canonical line bundle as well, called the canonical divisor.

Given a divisor D = Y m;V;, we say that D is effective if and only if
m; > 0, denoted by D > 0. If D is effective, then [D] has holomorphic
sections. Define H°(X;[D]) to be the vector space of holomorphic
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sections of the line bundle [D]. This space can be empty which means
that the line bundle [D] doesn’t have holomorphic sections. Conversely
if a line bundle L has a holomorphic section s, then the divisor D = (s)
is an effective divisor.

Definition 2.12. Given a divisor D, |D| is defined to be the set of
all effective divisors linearly equivalent to D and is called the linear
system. Define £(D) = {f meromorphic| (f) + D > 0}.

Take a meromorphic section sy of [D] such that (sg) = D. Then
(fso) = (f) + (so) > 0 for f € L(D). Hence fsy is a holomorphic
section of [D]. Therefore there is a one-to-one correspondence between
L(D) and H°(X;[D]) and |D| = P(H°(X;[D])).

One of the most important usages of line bundles is to construct
morphisms from line bundles. It goes as follows.

Suppose H(X;[D]) isn’t empty. Let E be a subspace of H(X; [D]).
Take a basis {sg,...,sx} of E. Let B={p € X |so(p) =0,...,sx(p) =
0}. B is called the base locus of E. When E = HY(X,[D]), B is also
called the base locus of the linear system |D|, i.e., p € B if and only if
p € D' for all D' € |D|.

We can define a “map” ¢p: X— — P* by mapping p € X to
[s0(p), - - -, sk(p)]. To be more precise, given a point p ¢ B, take a triv-
ialization of L over an open subset U containing p and let fy,..., fx
be the corresponding holomorphic functions of so(p), . .., sk(p) respec-
tively under the trivialization and define pg(p) = [fo(p),-- -, fe(p)]-
One can check that the definition is independent of trivializations.
Clearly this map is only defined over X — B and is called a ratio-
nal map in general. It is a holomorphic map on X — B and the image
of pg doesn’t lie on any hyperplane in P*, called non-degenerate.

Definition 2.13. ¢: X— — Y is called a rational map between two
varieties X and Y if there exists a subvariety V' of X such that ¢: X —
V' — Y is a holomorphic map.

Suppose B = (), then we get a morphism ¢z: X — P*. Choosing a
different basis of E amounts to a projective automorphism of P*. One
can check that p*[H] = [D] where [H] is the hyperplane line bundle on
Pk,

Conversely, if we have a non-degenerate map f: X — P*. Take
20, - .., 2 as the basis of H°(P*; [H]). Then f*z, ..., f*z form a basis
of a subspace E of H°(X; f*[H]). Hence we get a one-to-one corre-
spondence between the set of non-degenerate maps f: X — P* modulo
projective transformations and the set of line bundles L over X with
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a k + 1-dimensional subspace E of H°(X; L) such that F has no base
locus.

Question 2.14.

(i) Given a line bundle, how do we compute the dimension of
HO(X; L)?
(ii) When is the linear system |D| base point free?
(iii) When is the map ¢g an embedding?

In order to answer the questions above, we need Riemann-Roch The-
orem, Serre duality and Kodaira vanishing Theorem all of which depend
on the cohomology theory of sheaves.

Finally, let’s list some results which we won’t prove.

Theorem 2.15 (Bertini’s Theorem). Let X be a compact complez sub-
manifold of P*. There exists a hyperplane H C P™ such that V = XNH
15 a complex submanifold of X.

Theorem 2.16 (Lefschetz Hyperplane Theorem). With the same as-
sumption as in Theorem 2.15. Then the map HY(X,Q) — HY(V,Q)
induced by the inclusion V- — X is an isomorphism for ¢ < n—2 where
n is the complex dimension of X.

Using Bertini’s theorem, we can construct many projective mani-
folds. Let 4: P* — PV be the d-uple embedding,

d N
P* — P",  [z0,-.., 20 — [u0,-..,un]
where {uo, . .., uy} is the collection of all monomials such as 24, 2§21, . . .
By abuse of notations, we also use [ug,...,uy| as the homogeneous

coordinates of PY. By Bertini’s theorem, take a hyperplane H =
{agug + . .. ayux = 0} of PV such that H N py(P") is a submanifold of
wa(P™). H N py(P") is isomorphic to a smooth hypersurface Y of P”
given by a degree d homogeneous polynomial F' = agzd+. .. +ayz?. We
can use the adjunction formula to calculate the canonical line bundle
Ky.

First of all, the line bundle [Y] = [dHy] where Hy is the hyperplane

{20 = 0}. This is because the meromorphic function — has its asso-
2

0
ciated divisor to be Y — dH,. Thus divisors Y and dH, are linearly
equivalent.

By the adjunction formula,
Ky = (Kpn @ [Y])]y 2 ([~ (n+ 1)Ho] ® [dHy])|y = [(d —n — 1) Holly-

Let n = 2. When d = 1, Y is a line in P2. When d = 2, Y is
a conic curve still isomorphic to P!. This can be seen via the 2-uple
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embedding: [z,y] € P! — [2%, zy,vy?] € P2 If we use [u,w,v] as the
homogeneous coordinates of P2, the image of the 2-uple embedding
is given by uv — w? = 0, a conic curve. Other conic curves can be
mapped to this conic via automorphisms in PGL(2) = P(GL(3,C)).
Therefore in both cases above, Ky has no global non-zero sections.
When d = 3, Ky = Y x C and thus dimI'(Y, Ky) = 1. This is the
cubic curve which is an elliptic curve. When d > 4, Ky = [(d—3)Ho||y
and dimI'(Y, Ky) > 1. In fact, one can calculate that dimI'(Y, Ky) =
(d—1)(d—-2)/2 > 1.

Let n = 3. When d = 1,2,3, Ky = [(d — 4)Ho||y has no non-zero
global sections. For d = 1, Y is just isomorphic to P2. For d = 2, the
quadric surface is isomorphic to P! x P'. This can be seen as follows.
Consider the map f: P! x P* — P3, [z, y] x [u,v] = [zu, 20, yu, yv]. If
we use [zo, 21, 22, 23] as the homogenous coordinates of P2, the image
of the map f is given by the equation zyz3 — 2129 = 0, i.e., a quadric
surface. When d = 4, Ky 2 Y x C is a trivial line bundle, similar
to the elliptic curve for dimensional one case. Such a surface is called
K3 surface. When d > 4, Ky = [(d — 4)Hy||y with d —4 > 0. Such
surfaces are called general type.

Let n =4, When d = 1,2,3,4, Ky = [(d — 5)Hy||y has no non-zero
global sections. When d = 5, Ky =2 Y x C is a trivial line bundle,
similar to K3 surfaces. It is called the Calabi-Yau three-fold. When
d > 5,Y is called general type and Ky = [(d —5)Hy||y with d—5 > 0.

3. SHEAVES AND COHOMOLOGIES OF SHEAVES

Example 3.1. Let X be a complex manifold, U be an open subset of
X. Let O(U) be the set of holomorphic functions on U. O(U) is an
abelian group. For two open subsets U C V, the restriction map

rvo: OV) = OWU), rvu(f)=flu

is a group homomorphism. 7y is an identity map. We have the
following properties:
(i) For any triple of open subsets U C V' C W, we have ryy =
Tvu ©Tw,v-
(ii) For a collection of open sets U, C X, let U = U,U,. If h €
OU) and ryp, (h) =0, then h = 0.
(iii) If fo € O(Ua) and if ry, v.nvs (fa) = TUsvanvs (f5), then there
exists h € O(U) such that ryp, (h) = fa.

We define the stalk Oy, to be the group
{(f,U)|f € O(U),U is an open subset containing p}/ ~
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where the equivalence relation ~ is defined as (f,U) ~ (g,V) if and
only if there exists an open subset W containing p, W C U NV such
that flw = g|lw. The stalk Ox, = { converging power series at p }.

So we have seen an example of a sheaf.

Definition 3.2. F is called a sheaf over X if for any open subset U of

X, there exists an abelian group F(U). For any two subsets U C V.

there exists a restriction map ry: F(V) — F(U) which is a group

homomorphism satisfying the properties (i), (i) and (iii) above with O

replaced by F and an additional property F () = 0 and ryy = id.
Any element f € F(U) is called a section of F over U.

The sheaf Ox we constructed in the Example 3.1 is called the struc-
ture sheaf of X. Note that Oy is also a sheaf of rings since each Ox (U)
is a ring.

If, in addition, F(U) is an Ox(U)-module for any open subset U,
and the restriction maps 7y are compatible with module structures,
then F is called a sheaf of Ox-module.

We can define the stalk of the sheaf F at a point p as

F,={(f,U)| f € F(U),U is an open subset containing p}/ ~

where the equivalence relation ~ is defined as (f,U) ~ (g,V) if and
only if there exists an open subset W containing p, W C U NV such

that TU7w(f) = 7’V,W(f])'

Example 3.3.
(i) The constant sheaf Z is defined as Z(U) = Z for any connected
open subset U and the restriction map is the natural one.
(i) Q%: Q% (U) = {holomorphic p-forms on U} and the restriction
map is the natural one.
(iii) The ideal sheaf Zg of a subvariety S of X:

Zs(U) = {holomorphic functions on U vanishing on S N U}

and the restriction map is the natural one.
(iv) O%: O%(U) is the multiplicative group of nonvanishing holo-
morphic functions on U.

Let m: E — X be a holomorphic vector bundle over X. There is a
sheaf associated with F, denoted by Ox(FE), defined as

Ox(F)(U) = {holomorphic sections of E|y}.

One can check that Ox(F) is a sheaf of Ox-module. Moreover, for any
point p € U, take a local trivialization ¢: E|y — U x C" where r is
the rank of E. Hence a holomorphic section o of E|y can be written
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as (fi1,..., fr) where f; is holomorphic over U. Therefore Ox (E)(U) is
isomorphic to Ox(U) @ ... ® Ox(U) as modules. We call this type of
sheaves locally free. Hence a holomorphic vector bundle corresponds to
a locally free sheaf. Converse is also true, i.e., a locally free sheaf £ cor-
responds to a holomorphic vector bundle E such that € = Ox(E). So
sometimes we don’t distinguish the difference between F and Ox(E).

Example 3.4. The trivial line bundle X x C corresponds to the struc-
ture sheaf Ox

Given a divisor D, it corresponds to the line bundle [D] which cor-
responds to the rank-1 locally free sheaf Ox([D]). By abuse of the
notation, we shall use Ox (D) to denote Ox([D]) and call it an invert-
ible sheaf.

Definition 3.5. Given two sheaves F and G on X. ¢: F — G is
called a sheaf morphism if for any open subset U of X, there exists a
homomorphism of groups ¢y : F(U) — G(U) which is compatible with
the restriction maps, i.e., Ty 0 Yy = Yy o Ty .

If, in addition, F and G are sheaves of Ox-modules and ¢y is a
morphism of Ox(U)-modules, then ¢ is called a morphism of sheaves
of Ox-modules.

Example 3.6. Let S be a subvariety of X. The inclusion map Zg —
Ox is a morphism of sheaves of Ox-modules.

The inclusion map ¢p: Z(U) — Ox(U) provides a morphism of
sheaves from the constant sheaf Z to the structure sheaf.

The exponential map

expy: Ox(U) = O%(U), feOx(U) = ¥ e 0% (U)
is a morphism of sheaves from Ox to O%.

Given a morphism ¢: F — G between two sheaves, it is easy to see
that it induces a morphism ¢,: F, — G, between the stalks of the
sheaves at a point p € X. ¢ is called injective (or surjective ) if , is
injective (surjective respectively) for every point p € X. One can show
as an exercise that ¢ is injective if and only if for any open subset U
of X, the map py: F(U) — G(U) is injective. The similar statement
for surjection doesn’t hold.

Example 3.7. The inclusion map Z — Ox is an injection. The ex-
ponential map exp: Ox — O% is surjective. This can be checked as
follows. Let (f,U) be an element in O% ,. We can assume that U is
simply connected. Hence there exists g € Ox(U) such that f = >,
Hence exp,((g,U)) = (f,U). In fact, the following sequence is exact,
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i.e., (use as a definition) it is an exact sequence for stalks at every point
of X,

0—>7Z— Ox = Oy —0. (3.1)

The exactness at the middle term is easy to check.

If we take X = C, take U = C — 0. Then z € O%(U). But there
doesn’t exist any f € Ox(U) such that exp(f) = z. Thus surjection
of a sheaf morphism ¢: F — G doesn’t imply ¢y : F(U) — G(U) is
surjection.

Example 3.8. Let S be a subvariety (not necessarily smooth) of X,
but we assume that it is smooth for the simplicity. One can check the
following exact sequence is exact:

0—>Zs—0Ox - 0g—0

where the last morphism is the restriction map from X to S.

Assume S is of codimension one (the following statement is also true
when S is singular). Let sy be the holomorphic section of [S]. Since
Ox(—S) = Ox(S)*, we will have a morphism sy: Ox(—S) — Ox.
One can check that the image of this map is Zg. Hence we get another
exact sequence

0— Ox(=5) = 0O0x - 05 —0 (3.2)

Now let’s define the Cech cohomology of sheaves.

Let F be a sheaf on X, U = {U,} be a locally finite open covering of
X. We define the set of p-cochains as follows: C°(U, F) =[], F(U,),
CH U, F) = [laps F(Ua NUp), ete. If 0 = {04ay.a,} € CP(U,F), we
require that 04..a, = (—1)51’9"(7)07(%)“,7(%) where 7 is a permutation
on p + 1 letters. There is an operator

§: CP*(U, F) — CP*H(U, F)

defined as follows:
p+1
<5U)a0...ap+1 — Z<_1)J0ag...dj,..ap+1‘Uaoﬁ...ﬂUap+1
§=0
where &; means that this term is deleted.

A p-cochain o is called a cocycle if o = 0, and a coboundary if
o = 07 for some (p — 1)-cochain 7. We can check that §2 = 0. Hence
Im(§: CP~1 — CP) is contained in ZP(U,F) = Ker(§: C? — CPT).
We define

ZP(U, F)
o(Cr=1(U, F))

HP(U,F) =
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If U is a “good” covering, then H?(U, F) is independent of the covering
and called the cohomology of the sheaf F, denoted by H?(X;F). We
use h¥(X; F) to denote the dimension of the vector space H*(X; F) if
F is a coherent sheaf of Ox-module.

Let {04} € Kerd = H°(X; F). Then

5(0-)04,8 = U,Banr‘lUﬁ - O—a’UaﬂUB-

Thus by the definition of sheaves, there exists a section s € F(X) such
that s|y, = 04. Therefore H*(X; F) = F(X) =T['(X;F).

One sees that H°(X; Ox(D)) is the space of holomorphic sections of
the line bundle [D], or Ox(D)(X).

Using the definition, we can check that Pic(X) = H'(X;0%) as
follows. Take a line bundle L, choose an open cover U, of X such that
wu: Ly, = U, x C is a trivialization. Thus we get transition functions

{gap} satistying
GoB " 98y " Gya = 1a Gap = gﬁ_;
The collection {U,, g} gives an element g in C*(U, O%) such that

(09)asy = 967 * Gy * 987 = 9p * Grar - Gap = L.

Thus g is a cocycle and hence gives a cohomology class in H'(X; O%)
and hence a map from Pic(X) to H'(X; O%).This definition is well-
defined due to the fact that different choice of trivilization gives another
cocycle different from the previous one by a coboundary. Then one can
prove that this map is a bijection.

One of the basic properties of the cohomology of sheaves is the fol-
lowing result.

Theorem 3.9. Let 0 - & — F — G — 0 be a short exact sequence of
sheaves on X. Then there exists a long exact sequence of cohomologies:

— H'(X;E) —» H'(X;F) = H(X;G) —» H"Y(X;8) —  (3.3)
where ¢ > 0.

Let’s review some results from Hodge theory.
Let X be a projective nonsingular variety. Then the Hodge Decom-
position Theorem says that H*(X;C) = @, ,=1HP(X), HP(X) =

Her(X), and HP9(X) = HY(X; Q% ). We use h?? to denote the dimen-
sion of the vector space HP?(X).

Corollary 3.10. The Betti numbers box.1(X) of odd degree are even.
Corollary 3.11. HY(IP™;QP) is zero if p # q and is C otherwise.
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Proof. Since H**Y(P*;Z) = 0, HI(P", %) = 0 if p + ¢ is odd. Since
H2k(]Pm;Z) =Z,1=by= > hP1> hP2k—p 4 p2k=pp — Qpp.2k—p if
p+q=2k

p # k. Hence h?* PP = 0 if p # k and hPF = 1. O
Finally let’s list some terminologies and some facts.

Facts and Terminologies 3.12. Let X be a nonsingular projecrive
variety of dimension n.
(i) ™0 = dimH°(X; Kx) = dimH"(X; Ox) is called the geometric
genus of X, denoted by p,.
(ii) 'Y = h(X;Qx) = h'(X;Ox) is called the irregularity of X,
denoted by ¢. From Hodge theory, 2q = b;.
(iii) For a sheaf F, the Euler characteristic of F is defined as

X(F)=hr(X;F) = hY(X; F)+...+ (=1D)"n"(X; F).

(iv) P, = h(X; Ox(K¥™)) is called the plurigenera.

(v) Let F be alocally free sheaf on X, then H(X; F) = H" /(X; F*®
Ox(Kx))*. This is a speicial case of Serre duality.

(vi) Let f: X — P™ be a holomorphic embedding. Let [H| be the
hyperplane line bundle on P". We will use Opr (1) to denote the
invertible sheaf Opn(H). Let L = f*[H]. Such a line bundle is
called very ample. Any line bundle L on X such that L®™ = L
for some m > 0 is called ample. If L is ample and D is a
divisor, then there exists ng such that D ® L™ is very ample for
n > ng. If L is ample, then for any line bundle E, there exists
an integer ng such that h'(X; E® L®") = 0 for n > ng and i > 0
and £ ® L®" is very ample. Kodaira Vanishing Theorem says
that if L is ample, then H9(X; Q5 ® Ox(L))=0ifp+q>n.

4. RIEMANN SURFACE

Let D = > m;p; be a divisor on a Riemann surface S. We define
the degree of the divisor D to be deg D = Y m;. If f is a meromorphic
function on S, then f can be regarded as a holomorphic map from S to
P!. The associated divisor (f) is just f~1(0)— f~!(oc0) with multiplicity
considered. Hence the degree of the divisor (f) is the number of zeros
of f minus the number of poles of f counted with multiplicity. Each
of these numbers equals the degree of the map f. Hence the degree
of (f) is zero. This implies that the degree is invariant under linearly
equivalence. Therefore we can define the degree of a line bundle L,
denoted by deg L, to be the degree of a divisor D such that [D] = L.

Let f: S — S be a non-constant holomorphic map between two
Riemann surfaces S and S’. For any point ¢ € S, there exists a local
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coordinate z at ¢ and w at p = f(q) € S’ such that f is locally of the
form w = z#. u(q) = p is called the ramification index of q. If u(q) > 1,
p = f(g) is called the branch point of f. R =} _c(u(q) —1)g is called
the ramification divisor. Away from the ramification divisor, f is an
unramified covering (topological covering).

Let D = > m;q; be a divisor on S. f: S — S’ be a non-constant
holomorphic map. Let p € S’ be a point, f~*(p) = {q1,...,qs}. Define

f*(q) = >_ p(gj)g;. We extend the definition f* to divisors by linearity.
j=1
Now we get a map

f*: Div(S") = Div(S), D — f*D.

It is easy to show that if D ~ D', f*D ~ f*D" and [f*D] = f*[D].
Now we want to relate the genus of S to that of 5.
Take a meromorphic section o of Kg. f*o is a meromorphic section
of Kg. Around p = f(q) € ', f is locally of the form w = z*. Write

ZE:UU; dw where h(w) and g(w) are holomorphic
h(z)

functions around p. Write (—) = {p as divisors. Around p, f*o
p

o locally around p as

9(2)

is of the form

R )

g(z+) g(z")
(ff0)q = (n—=1V)g+plg = (p =g+ f*(lg) = (n—1)g+ [*(0)g-
Therefore, summing over all ¢ € S/, we get
(') = R+ (o).
In terms of line bundles, we get
Ks = R ® f*Kg. (4.1)

If we compute the degree, using that deg Kg = 2¢g(S)—2 and deg K¢ =
2¢g(S") — 2 (we won’t prove it here), we get

2g(S) —2=deg R+ deg f[*Kg = deg R + n(2g(S") — 2) (4.2)
where n is the degree of the map f. So

X(S) = nx(8") =Y _(u(q) = 1). (4.3)

qeS

These formulae are called the Riemann-Hurwitz formulae.
Here are some applications of the Riemann-Hurwitz formulae.

Corollary 4.1. If f: S — S’ is not a constant map, then g(S) > g(S").
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Theorem 4.2 (Riemann-Roch). Let S be a Riemann surface of genus
g, D be a divisor on S. Then we have

h’(S; 0s(D)) = h'(S;Os(D)) = deg D +1 —g.
By Serre duality, the Riemann-Roch formula can also be written as
h%(S; Og(D)) — h°(S; Os(Kg — D)) = deg D + 1 — g. (4.4)

Lemma 4.3. Let D be a divisor on S, ifdeg D < 0, then h°(S; Og(D)) =
0.

Let’s look at some applications of Riemann-Roch formula.

Example 4.4. Let S be a Riemann surface with genus ¢ = 0. Let p
be a point on S. By the Riemann-Roch formula, we have

h2(S;Os(p)) = h(S; Os(—p+ Ks)) =1+ 1 =2.

Since deg(Ks — p) = —3 < 0, h%(S;05(—p + Ks)) = 0. Hence
hY(S;Os(p)) = 2. Take two linearly independent sections sg,s; €
H°(S;0s(p)). H°(S;Os(p)) is clearly base-point-free. Then sq/s; de-
fines a holomorphic map to P! with degree equal to one. Hence it is an
isomorphism. Therefore every genus zero Riemann surface is isomor-
phic to P*.

Exercise 4.5. Let S be a Riemann surface, pq,...,p, € S be points on
S. Then there is a meromorphic function on S having poles (of some
order > 1) at each of the p; and holomorphic elsewhere.

Exercise 4.6. Let S be a genus two Riemann surface. The canonical

linear system P(H°(S; Ogs(Ks))) determines a morphism f: S — P! of

degree 2. Show that it is ramified at exactly six points with ramification

index 2 at each point. f is uniquely determined up to an automorphism

of P'. So S determines an (unordered) set of 6 points of P! up to

automorphisms of P!,

Theorem 4.7. Let D be a divisor on a Riemann surface S of genus g.
(i) If deg D > 2g, then the linear system |D| has no base points.
(ii) If deg D > 2g + 1, then ¢|p) is an embedding.

Proof.  For (i), let p be a point on S, consider the exact sequence

0— Os(—p) - Os — O, = 0.
Tensor the exact sequence by Ox (D), we get

0 — Os(D —p) = Os(D) = Os(D)|, — 0. (4.5)
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Take the cohomologies of the sheaves in the exact sequence (5.5), we
get an exact sequence

H(Os(D)) = H*(Os(D)|,) = H'(Os(D — p)).

Since deg(p — D + Kg) < 1—2g9+2g9—2 = —1, k' (Os(D —p)) =
h°(Os(Ks — D +p)) = 0. Hence the map H(Og(D)) — H*(Os(D)|,)
is a surjection. Therefore there exists a section s € HY(Og(D)) such
that s(p) # 0. Thus the linear system |D| is base point free.

For (ii), take two distinct points p,q on S. Consider the exact se-
quence

0—=O0s(—p—q) > 0s = 0,80, —0.
Tensor it by Og(D), we get another exact sequence
0— Os(D—p—q) — Os(D) = Os(D)|, ® Os(D)|, = 0. (4.6)

Take the cohomologies of the sheaves in the exact sequence (4.6), we
get an exact sequence

H(Os(D)) = H(Os(D)|,) & H*(Os(D)ly) = H'(Os(D = p = q)).
Since deg(p+q— D+ Kg) <2—-29—1+29—2=—1, h1(Os(D —
p—q)) = h°(Os(Ks — D+ q+p)) = 0. Hence the map H°(Og(D)) —
H°(Ogs(D)|,) ® H*(Os(D)],) is a surjection. Therefore there exists
a section s € H°(Og(D)) such that s(p) = 0 but s(q) # 0. Thus

©ip|(p) # ¢ip|(q), i.e., the map ¢|p is one-to-one.
Let p € S, consider the exact sequence

0 — Og(—2p) = O — Oy, — 0.
Tensor it with Og(D) and take cohomologies, we get
H°(Os(D)) — H°(Og(D)|sp) — H(Os(D — 2p)).
By the same argument as above, the map H°(Og(D)) — H°(Os(D)|z)

is surjective. Hence there exists a section sy € H°(Og(D)) such that
so(p) = 0 and p is a simple zero for sy. Let sq,...,s, be sections of

H°(Og(D)) such that {sg, s1, ..., s, } is a basis of H*(Og(D)). Without
loss of generality, assume s, (p) # 0. So
oip|(x) = [s0(x),s1(),...,sp(x)] € P", and ¢p|(p) € Uy.

So near p, we have

( So(x) Sp—1(x) )
sa(@)’ 7 salz)
Since so(z) vanishes at p only once, if z is a coordinate near p, then
so(x)/sn(x) = h(z)z where h(p) # 0. Therefore the differential of the

map @|p| has rank equal to one at p. So it is an embedding. Note

©ip|: <p‘*Dl|(Un) —U,, =—
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that another choice of the basis of H°(Og(D)) gives another map to
P™ which is related to the original one by an automorphism of P*. [J

Example 4.8. Let S be an elliptic curve. Let D be a divisor on
S of degree three. The canonical divisor Ky is trivial. Hence from
Riemann-Roch, we get

h%(S; Os(D)) — h%(S; Og(—D)) =deg D + 1 — g = 3.

Since deg(—D) = —3 < 0, h°(S; Os(—D)) = 0. Hence the map ¢|p,
embeds S into P2. So every elliptic curve is a plane curve.



