
INTRODUCTION TO ALGEBRAIC GEOMETRY
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Abstract. The materials are based upon essentially Griffiths-
Harris and Beauville’s book “Complex Algebraic Surfaces”.

1. Complex Manifolds

Let W be an open subset of Cn, z1, . . . , zn be the coordinates for Cn.
We write

zi = xi+
√
−1yi,

∂

∂zi
=

1

2
(
∂

∂xi
−
√
−1

∂

∂yi
),

∂

∂zi
=

1

2
(
∂

∂xi
+
√
−1

∂

∂yi
).

Let f(z1, . . . , zn) be a continuous function on W . A well-known fact

says that if
∂f

∂zi
= 0 for all i = 1, . . . , n, then for any a = (a1, . . . , an) ∈

W , there exists εi > 0 for i = 1, . . . , n such that f =
∑
ki≥0

ck1,...,kn(z1 −

a1)
k1 . . . (zn − an)kn is a converging series for |zi − ai| < εi. Such a

function is called a holomorphic function.
Write f(z1, . . . , zn) = u(z1, . . . , zn) +

√
−1v(z1, . . . , zn) where u and

v are real-valued functions on W . If
∂f

∂zi
= 0, then we get the Cauchy-

Riemann equations for u and v:

∂u

∂xi
=
∂v

∂yi
,

∂v

∂xi
= − ∂u

∂yi
.

∂2u

∂x2i
+
∂2u

∂y2i
= 0, and

n∑
i=1

∂2u

∂x2i
+
∂2u

∂y2i
= 0.

Hence u is a harmonic function on W and so is v.

Definition 1.1. Let X be a topological space with countable bases
and Hausdorff. X is said to be a complex manifold if there exists
a covering {Ui} of X together with maps ϕi : Ui → Cn such that ϕi
is a homeomorphism from Ui to the open subset ϕi(Ui) of Cn and
ϕi ◦ ϕ−1j : ϕj(Ui ∩ Uj) ⊂ Cn → ϕi(Ui ∩ Uj) ⊂ Cn is biholomorphic. If
{z1, . . . , zn} is a coordinate system for Cn, then it is also called a local
coordinate system for Ui (or X). zk(ϕi) is a function on Ui, by abuse
of notation, denoted also by zk.
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Example 1.2. Consider the Riemann sphere S2 = P1.
One way to define P1 is to regard it as the space of lines in C2

passing through the origin. Here is another way to define P1: P1 =
{C2 − {(0, 0)}}/C∗ where C∗ acts on C2 by k(x, y) = (kx, ky) for
k ∈ C∗ and (x, y) ∈ C2. Hence we can write

P1 = {[z0, z1] | [z0, z1] = [kz0, kz1] for k ∈ C∗, (z0, z1) 6= (0, 0)}
where [z0, z1] is called the homogeneous coordinates.

Let π : C2−{(0, 0)} → P1 be the quotient map. The topology on P1

is the induced quotient topology. Take two open subsets U0 and U1 of
P1:

U0 = {[z0, z1] ∈ P1 | z0 6= 0}, U1 = {[z0, z1] ∈ P1 | z1 6= 0}.
we have homeomorphisms:

ϕ0 : U0 → C, [z0, z1]→ u =
z1
z0

; ϕ1 : U1 → C, [z0, z1]→ w =
z0
z1
.

Hence over the overlap ϕ0(U0 ∩ U1) = C∗, we have for u ∈ C∗,

w = ϕ1 ◦ ϕ−10 (u) =
1

u
, u→ [1, u] = [1/u, 1]→ 1/u.

Clearly ϕ1 ◦ ϕ−10 (u) = 1/u is holomorphic on C∗. Therefore P1 is a
complex manifold. Take S3 = {(z0, z1) ∈ C2 | |z0|2 + |z1|2 = 1}. S1 =
{eiθ} acts on S3 by the natural action. One can see that P1 = S3/S1.
Since S3 is compact, P1 is compact.

The following topological spaces are complex manifolds as well: Cn,
open subsets of Cn, the projective space Pn = {Cn+1 − (0, . . . , 0)}/C∗
where k ·(z0, z1, . . . , zn) = (kz0, kz1, . . . , kzn) for k ∈ C∗ , X×Y if both
X and Y are complex manifolds, Cn/Γ where Γ is a full rank lattice in
Cn, a subset of Cn defined by Y = {(z1, . . . , zn) ∈ Cn | f(z1, . . . , zn) =

0} where f is a holomorphic function on Cn and rank of (
∂f

∂z1
, . . . ,

∂f

∂zn
) =

1. The last example can be understood using the complex version of
the implicit function theorem.

Definition 1.3. Given a continuous function f on an open subset W of
X. f is said to be holomorphic if for any point p on X, there exists an
open neighbourhood U ⊂ W of p and a local coordinates ϕ : U → Cn

such that f ◦ ϕ−1 is holomorphic. Let (z1, . . . , zn) ∈ Cn be a local

coordinate on U , we define
∂f

∂zi
=
∂f ◦ ϕ−1

∂zi
.

One can check that this definition is independent of the local coor-
dinates we choose.



AG 3

Proposition 1.4. A compact connected complex manifold X has no
global holomorphic functions other than constant functions.

Proof. Let f be a holomorphic function on X. Then the real part
u of f is a harmonic function on X. By the maximum principle for
harmonic functions, since X is compact, u is a constant. The same is
true for the imaginary part of f . Hence f is a constant. �

As a corollary, any compact complex manifold of dimension bigger
than zero can never be embedded holomorphically in CN . For if not,
we can take a holomorphic function f on CN not constant on X. The
restriction of f to X would be a non-constant holomorphic function
on X, a contradiction. We know that any smooth compact manifold
X can be smoothly embedded in some RN and there are lots of global
smooth non-constant functions on X.

Let’s come back to the projective space Pn. Pn can be regarded as a
compactification of Cn as follows. Pn has some open subsets

Ui = {[z0, z1, . . . , zn] ∈ Pn | zi 6= 0}
for i = 0, . . . , n. All these open subsets are biholomorphic to Cn, for
example,

ϕ : U0 → Cn, ϕ([z0, . . . , zn]) = (
z1
z0
, . . . ,

zn
z0

) ∈ Cn.

The complement of U0 is

Pn − U0 = {[0, z1. . . . , zn] ∈ Pn} = Pn−1.
Therefore , if we identify Cn with U0 by (x1, . . . , xn) ∈ Cn → [1, x1, . . . , xn],
then the set of infinities, i.e., Pn−U0, is the space of lines on Cn passing
through the origin.

Example 1.5. Consider the curve Y ⊂ C2, Y = {(x, y) ∈ C2) |xy =
1}. One can show that it is a (non-compact) complex manifold of
dimension one. Take a compactitication of C2 as C2 → U0 ⊂ P2,
(x, y) → [1, x, y]. For the homogeneous coordinates [z0, z1, z2] of P2,
we choose a homogeneous polynomial F (z0, z1, z2) = z1z2 − z20 . Let
Y = {[z0, z1, z2] ∈ P2 |F (z0, z1, z2) = 0}. Clearly Y is a closed subset
of P2 even though F is not a well defined function on P2. Y ∩ U0 =
{[z0, z1, z2] ∈ P2 | z0 6= 0, z1z2 − z20 = 0} is isomorphic to Y by taking
x = z1/z0, y = z2/z0.

The intersection Y with the set of infinities is

Y ∩(P2−U0) = {[z0, z1, z1] ∈ P2 | z0 = 0, z1z2 = z20} = {[0, 0, 1]}∪{[0, 1, 0]},
the two points which represent two “asymptotic” directions of Y in C2,
i.e., x-direction and y-direction.
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In general, a homogeneous polynomial F on Pn is not a well defined
function on Pn, but the closed subset

Y = {[z0, z1, . . . , zn] ∈ Pn |F (z0, z1, . . . , zn) = 0}

is well defined and is a codimension one hypersurface. The function
f(z1, . . . , zn) = F (1, z1, . . . , zn) is a polynomial on Cn = U0 and the
zero locus of f , Y = {(z1, . . . , zn) | f(z1, . . . , zn) = 0)}, is Y ∩ U0.
Conversely, for a polynomial f(z1, . . . , zn) of degree d on Cn, e.g.,
f(z1, z2) = z1z2 − 1, we can homogenize it to get a homogeneous poly-
nomial F (z0, z1, . . . , zn) of degree d and Y = Y ∩U0, e.g., F = z1z2−z20 .
Y is a compactification of Y .

Definition 1.6. A projective variety X is a closed subset of Pn defined
as

X = {[z0, z1, . . . , zn] ∈ Pn |F1(z0, . . . , zn) = 0, . . . , Fk(z0, . . . , zn) = 0}

where F1, . . . , Fk are homogeneous polynomials on Pn.
An open subset U of X is called an algebraic quasi-variety. X is said

to be nonsingular or smooth if it is a complex manifold.

Example 1.7. Let’s look at two examples of singular curves.
Let X = {[z0, z1, z2] ∈ P2 |F (z0, z1, z2) = z31 − z22z0 = 0}. Consider

X ∩ U0 = {(x, y) ∈ C2 |x3 = y2}. Let f(x, y) = F (1, x, y). Then
∂f

∂x
= 3x2 and

∂f

∂y
= −2y. Clearly X is singular at the point [1, 0, 0].

This singular point is called a cusp.
Let Y = {[z0, z1, z2] ∈ P2 |F (z0, z1, z2) = z22z0 − z21(z1 + z0) =

0)}. Consider Y ∩ U0. Let f(x, y) = F (1, x, y) = y2 − x2(x + 1).
∂f

∂x
= −3x2 − 2x and

∂f

∂y
= 2y. So [1, 0, 0] is a singular point of Y .

This point is called an ordinary double point.

In the end, we list some results we won’t prove.
A theorem of Chow says that any compact complex submanifold of

Pn is algebraic, i.e., it is the zero locus of some finitely many homoge-
neous polynomials on Pn.

Let X be an algebraic variety. Define a new topology, called Zariski
topology, on X by defining a closed subset of X to be a subvariety
of X. Note that this topology is not Hausdorff. For example, take a
Riemann surface X. A closed subset of X in Zariski topology is a set
of finitely many points on X.
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2. Meromorphic functions, divisors and line bundles

Let X be a smooth algebraic variety, i.e., X is holomorphically em-
bedded in some Pn. let F and G be two homogeneous polynomials over
Pn of the degree d. Consider the quotient

F

G
=
kdF

kdG
=
F (kz0, . . . , kzn)

G(kz0, . . . , kzn)
for k ∈ C∗.

Hence f =
F

G
is a well defined meromorphic function on Pn.

Example 2.1. Consider X = P1. Take F (z0, z1) = z21 , G(z0, z1) =
z0(z0 − z1). Let f = F/G. The zeros of f counted with multiplicity
are 2p where p = [1, 0] and the pole of f counted with multiplicity are
q1 and q2 where q1 = [0, 1] and q2 = [1, 1]. We use the symbol

(f) = 2p− q1 − q2,
called the divisor associated to f , to record the zeros and poles (counted
with multiplicity) of f . If g is another meromorphic function on X with
(g) = 2p−q1−q2, then the meromorphic function f/g has no zeros and
no poles. Hence it is must be a holomorphic function which must be a
constant by the Theorem 1.4, i.e., f = ag for a constant a. Therefore
the divisor (f) determines the function f up to a multiple of a constant.

In general, for any meromorphic function f on a complex compact

manifold X, the divisor (f) =
k∑
i=1

miVi is a formal sum where Vi’s are

codimension one subvarieties ofX, f vanishes along Vi with multiplicity
mi if mi > 0 and f has a pole along Vi with multiplicity mi if mi < 0.
By the same argument as that of the example above, we see that the
divisor (f) determines the meromorphic function f up to a constant.

Now let’s give a definition of divisors in the most general context.

Definition 2.2. A divisor D on X is a formal sum D =
k∑
i=1

miVi where

Vi’s are codimension one subvarieties of X and mi’s are integers.

A divisor in general is not (f) for some meromorphic function f on
X. For example, let X be P1, D = p1 + p2. If D = (f), then f would
be a holomorphic function on X since it has no poles and it is not a
constant since it vanishes only at the points p1 and p2, a contradiction.

We define Div(X) to be the set of all divisors on X. Addition, minus
and the zero elmemnt can be defined on Div(X) as follows:

(i) Addition: for D =
∑
miVi, D

′ =
∑
m′jV

′
j , define D + D′ =∑

miVi +
∑
m′jV

′
j .
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(ii) Minus: −D =
∑

(−mi)Vi.
(iii) Zero element: D = (1).

We can check that Div(X) is an abelian group. Note that

(f · g) = (f) + (g), −(f) = (
1

f
)

for meromorphic functions f , g on X.
Here comes a question:

Question 2.3. What does a general divisor represent?

In order to answer the question, we take a different look at divisors.
Given a divisor D =

∑
miVi, for any point p on X, choose a neigh-

bourhood U of p such that there exists a meromorphic function f on
U with U ∩ D = (f). Hence we can get an open covering {Uα} of X
together with a collection of meromorphic functions fα over Uα. Such

a collection is also called a Cartier divisor. Then gαβ =
fα
fβ

is a non-

vanishing holomorphic function on Uα ∩Uβ. gαβ’s satisfy the following
properties:

gαβ = g−1βα on Uα ∩ Uβ, gαβgβγgγα = 1 on Uα ∩ Uβ ∩ Uγ (2.1)

If one knows the theory of vector bundles, one sees that the collection
{Uα, fα} defines a (complex) line bundle on X.

Exercise 2.4. Any Cartier divisor defines a divisor D in the sense of
the Definition 2.2.

Definition 2.5. Let X be a complex manifod. A topological space E
with a continuous map π to X, called a projection, is a holomorphic (or
complex) vector bundle over X if for any point p ∈ X E|p is a complex
vector space and there exists an open covering {Uα} of X such that

(i) there exists a homeomorphism ϕα : E|Uα = π−1(Uα)→ Uα×Cr

such that ϕα|p : E|p → p × Cr is an isomorphism of complex
vector spaces.

(ii) gαβ(x) = ϕα ◦ ϕ−1β |x×Cr : x×Cr → x×Cr, called the transition
function, is a holomorphic map from Uα ∩ Uβ to GL(r,C).

ϕα : E|Uα → Uα×Cr is called a trivialization of E over Uα, r is called
the rank of E. One can check that gαβ’s satisfy (2.1).

Conversely, given an open covering {Uα} of X and a collection of
gαβ’s which are holomorphic maps from Uα ∩Uβ to GL(r,C) satisfying
(2.1), we can construct a holomorphic vector bundle E over X:

E =
∐

Uα × Cr/ ∼
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where (x, vα) ∼ (y, vβ) if and only if x = y and vα = gαβvβ.

Exercise 2.6. Show that such E above is a well defined holomorphic
vector bundle over X.

Recall that given a divisor D, we get a Cartier divisor {Uα, fα}.
gαβ = fα/fβ is a nonvanishing holomorphic function on Uα ∩ Uβ sat-
isfying (2.1). Hence by the discussion above, we get a (holomorphic)
line bundle, denoted by [D]. In fact, we get something more. We can
also get a meromorphic section of [D] whose associated divisor is D.

Definition 2.7. Given a line bundle L. Let s be a holormorphic section
of the projection π : L → X away from a codimension one subvariety
such that for each p ∈ X there exist a neighbourhood U of p and a
trivialization ϕ : L|U → U × C such that ϕ(s)(x) = (x, f(x)) where f
is a meromorphic function over U .

Given a Cartier divisor D = {Uα, fα}, there exists a “canonical”
meromorphic section s of [D] defined as follows: for the trivialization
ϕα : [D]|Uα → Uα ×C, s(x) = ϕ−1α (x, fα(x)) for x ∈ Uα. One can check
that s is a globally defined meromorphic section of [D].

For a meromorphic section s of a line bundle L. we can define a divi-
sor D associated to s, denoted by (s), as follows: take local trivializa-
tions of L over X, ϕα : L|Uα → Uα×C. Let ϕα(s)(x) = (x, fα(x)). fα is
a moremorphic function over Uα. One can check that fα/fβ = ϕα◦ϕ−1β .
Hence fα/fβ is a nonvanishing holomorphic function over Uα ∩ Uβ.
Therefore {Uα, fα} is a Cartier divisor.

Now we can conclude that there is a one-to-one correspondence be-
tween the set of divisors D (equivalently Cartier divisors) and the set
of line bundles L with meromorphic sections s up to a constant. In
another word, a divisor D corresponds to a meromorphic section s of
the line bundle [D].

Define Pic(X) to be the set of (holomorphic) line bundles over
X modulo bundle isomorphisms. Pic(X) is a multiplicative abelian
group:

(i) Multiplication: given L and L′ in Pic(X), L ⊗ L′ is the mul-
tiplication. If {gαβ, Uα} and {g′αβ, Uα} are transition functions
of L and L′ respectively, then {gαβg′αβ, Uα} are the transition
functions of L⊗ L′.

(ii) Inverse: Given L ∈ Pic(X), the inverse of L, denoted by L∗, is
the dual bundle Hom(L,C). The transition functions of L∗ are
{g−1αβ , Uα}.

(iii) Unit element: the trivial line bundle is the unit element.
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Now we get a map

[ ] : Div(X)→ Pic(X). (2.2)

One can check the map [ ] is a homomorphism of groups.
A deep theorem of Lefschetz on (1,1)-classes implies that the map

[ ] is surjective when X is a projective manifold, i.e., X is holomor-
phically embedded in some projective space as a closed complex sub-
maniifold .

The next question is what the kernel of [ ] is.
Let D = {Uα, fα} be a Cartier divisor such that [D] = X × C.

There exist trivializations ϕα : [D]|Uα → Uα × C and the transition
functions are ϕα ◦ ϕ−1β = fα/fβ. Take a nonzero trivial section s of
[D] = X × C. Under the map ϕα, ϕα(s)(x) = (x, gα(x)) for x ∈
Uα. Similarly ϕβ(s)(x) = (x, gβ(x)). Both gα and gβ are holomorphic
and nonvanishig. Therefore we have gα(x) = ϕα ◦ ϕ−1β |x×C(gβ(x)) =
fα
fβ
gβ. Hence over Uα ∩ Uβ,

fα
gα

=
fβ
gβ

, i.e., {fα
gα
} is a globally defined

meromorphic function f on X and D = (f). One can also check easily
that if D = (f), [D] is a trivial line bundle. Therefore we get the
kernel of the map [ ] is the set of global meromorphic functions on
X and Pic(X) = Div(X)/Ker[ ]. This gives arise to the following
definition.

Definition 2.8. Given two divisors D and D′ on X. D and D′ are said
to be linearly equivalent, denoted by D ∼ D′, if there exists a global
meromorphic function f on X such that D = D′ + (f). Equivalently,
D ∼ D′ if and only if [D] = [D′].

Now we can give a complete answer to the Question 2.3: a divisor
D corresponds to a line bundle [D] with a meromorphic section s and
vice versa. The section s can be regarded as a “twisted” meromorphic
function. A meromorphic function f corresponds to a “special” divisor
linearly equivalent to 0 which corresponds to the trivial line bundle
with the meromorphic section given by f .

Let’s look at several examples.

Example 2.9. Universal line bundle on Pn.
Consider a subset L ⊂ Pn × Cn+1:

L = {([z0, . . . , zn], (`0, . . . , `n)) ∈ Pn × Cn+1 |
(`0, . . . , `n) = k(z0, . . . , zn) for some k}
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with the projection to the first factor π : L→ Pn. Define

ϕi : L|Ui → Ui × C, ([z0, . . . , zn], (`0, . . . , `n))→ ([z0, . . . , zn], `i).

One can check that this is an isomorphism of vector spaces on each

fiber. Over Ui ∩ Uj gij = ϕi ◦ ϕ−1j ([z0, . . . , zn], `j) = ([z0, . . . , zn],
zi
zj
`j).

Hence the transition functions are { zi
zj
, Ui ∩ Uj}. Therefore L is a line

bundle, called the universal line bundle.

s0([z0, . . . , zn]) = ([z0, . . . , zn], (1,
z1
z0
, . . . ,

zn
z0

)) is a meromorphic sec-

tion of L whose associated divisor (s0) = −H where H is the hyper-
plane H = {z0 = 0} in Pn. Hence L = [−H]. The line bundle [H],
which is the dual of [−H], is called the hyperplane line bundle.

Example 2.10. Canonical line bundle.
Let X be a complex manifold of complex dimension equal to n, T ∗X

be the holomorphic cotagent bundle of X. Define the canonical line
bundle KX = ∧nT ∗X .

On Pn, over U0, ω0 = d(
z1
z0

)∧ . . .∧ d(
zn
z0

) is a nonvanishing holomor-

phic n-form, hence provides a trivialization of KX over U0,

ϕ0 : KX |U0 → U0 × C, f(p)ω0 → (p, f(p))

where f is a holomorphic function on U0.

Similarly, over U1, ω1 = −d(
z0
z1

) ∧ d(
z2
z1

) ∧ . . . ∧ d(
zn
z1

) provides a

trivialization of KX over U1,

ϕ1 : KX |U1 → U1 × C, g(p)ω1 → (p, g(p))

where g is a holomorphic function on U1. Now we have

ω1 = −d(
z0
z1

) ∧ d(
z2
z1

) ∧ . . . ∧ d(
zn
z1

)

=
d(z1/z0)

z21/z
2
0

∧ d(
z2/z0
z1/z0

) ∧ . . . ∧ d(
zn/z0
z1/z0

)

=
z20
z21
d(z1/z0) ∧

(z1/z0)d(z2/z0)− (z2/z0)d(z1/z0)

z21/z
2
0

∧ . . .

= (
z0
z1

)n+1d(
z1
z0

) ∧ . . . ∧ d(
zn
z0

)

= (
z0
z1

)n+1ω0.
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Hence the transition function g01 = (
z0
z1

)n+1. Similarly we can obtain

the other transition functions gij. Compare this with the previous
Example 2.9, we see that KX = [−H]⊗(n+1) = [−(n+ 1)H].

Example 2.11. Adjunction formula.
Let X be a complex manifold of dimension n, V ⊂ X be a codimen-

sion one submanifold of X. We have the following exact sequence of
vector bundles

0→ TV → TX |V → NV/X → 0

where NV/X is the normal bundle of V in X. Take the dual of the exact
sequence, we get

0→ N∗V/X → T ∗X |V → T ∗V → 0

where N∗V/X is called the conormal bundle of V in X.

Choose an open covering {Uα} of X such that, over each Uα, V ∩Uα
is given by the zero locus {fα = 0} of some holomorphic function fα
defined over Uα. Then dfα|V ∩Uα is a non-vanishing holomorphic section
of N∗V/X . One way to see this is to choose a local coordinates z1, . . . , zn
in Uα such that V ∩ Uα = {z1 = 0}. Hence dz1, . . . , dzn is a basis for
T ∗X |Uα , dz2, . . . , dzn is a basis of T ∗V |Uα , dz1 is a basis of N∗V/X and we
take fα = z1.

Now dfα|V ∩Uα provides a local trivialization of N∗V/X :

ϕα : N∗V/X |Uα → Uα × C, gα(p)dfα|V → (p, gα(p)).

When restricted to V , we get

dfβ|V = d(
fβ
fα
· fα)|V = d(

fβ
fα

)|V · fα|V +
fβ
fα
|V · d(fα)|V =

fβ
fα
|V · d(fα)|V .

Hence gα = (
fβ
fα
|V )gβ, i.e., the transition function for N∗V/X over

Uα∩Uβ is
fβ
fα
|V which is also the transition functions for the line bundle

[−V ]|V . Therefore N∗V/X = [−V ]|V . Since ∧n(T ∗X |V ) = (∧n−1T ∗V ) ⊗
N∗V/X , we get the so called adjunction formula

KV = (KX ⊗ [V ])|V . (2.3)

Sometimes people use KX to denote a divisor corresponding to the
canonical line bundle as well, called the canonical divisor.

Given a divisor D =
∑
miVi, we say that D is effective if and only if

mi ≥ 0, denoted by D ≥ 0. If D is effective, then [D] has holomorphic
sections. Define H0(X; [D]) to be the vector space of holomorphic
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sections of the line bundle [D]. This space can be empty which means
that the line bundle [D] doesn’t have holomorphic sections. Conversely
if a line bundle L has a holomorphic section s, then the divisor D = (s)
is an effective divisor.

Definition 2.12. Given a divisor D, |D| is defined to be the set of
all effective divisors linearly equivalent to D and is called the linear
system. Define L(D) = {f meromorphic| (f) +D ≥ 0}.

Take a meromorphic section s0 of [D] such that (s0) = D. Then
(fs0) = (f) + (s0) ≥ 0 for f ∈ L(D). Hence fs0 is a holomorphic
section of [D]. Therefore there is a one-to-one correspondence between
L(D) and H0(X; [D]) and |D| = P(H0(X; [D])).

One of the most important usages of line bundles is to construct
morphisms from line bundles. It goes as follows.

Suppose H0(X; [D]) isn’t empty. Let E be a subspace of H0(X; [D]).
Take a basis {s0, . . . , sk} of E. Let B = {p ∈ X | s0(p) = 0, . . . , sk(p) =
0}. B is called the base locus of E. When E = H0(X, [D]), B is also
called the base locus of the linear system |D|, i.e., p ∈ B if and only if
p ∈ D′ for all D′ ∈ |D|.

We can define a “map” ϕE : X− → Pk by mapping p ∈ X to
[s0(p), . . . , sk(p)]. To be more precise, given a point p /∈ B, take a triv-
ialization of L over an open subset U containing p and let f0, . . . , fk
be the corresponding holomorphic functions of s0(p), . . . , sk(p) respec-
tively under the trivialization and define ϕE(p) = [f0(p), . . . , fk(p)].
One can check that the definition is independent of trivializations.
Clearly this map is only defined over X − B and is called a ratio-
nal map in general. It is a holomorphic map on X −B and the image
of ϕE doesn’t lie on any hyperplane in Pk, called non-degenerate.

Definition 2.13. ϕ : X− → Y is called a rational map between two
varieties X and Y if there exists a subvariety V of X such that ϕ : X−
V −→ Y is a holomorphic map.

Suppose B = ∅, then we get a morphism ϕE : X → Pk. Choosing a
different basis of E amounts to a projective automorphism of Pk. One
can check that ϕ∗[H] = [D] where [H] is the hyperplane line bundle on
Pk.

Conversely, if we have a non-degenerate map f : X → Pk. Take
z0, . . . , zk as the basis of H0(Pk; [H]). Then f ∗z0, . . . , f

∗zk form a basis
of a subspace E of H0(X; f ∗[H]). Hence we get a one-to-one corre-
spondence between the set of non-degenerate maps f : X → Pk modulo
projective transformations and the set of line bundles L over X with
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a k + 1-dimensional subspace E of H0(X;L) such that E has no base
locus.

Question 2.14.

(i) Given a line bundle, how do we compute the dimension of
H0(X;L)?

(ii) When is the linear system |D| base point free?
(iii) When is the map ϕE an embedding?

In order to answer the questions above, we need Riemann-Roch The-
orem, Serre duality and Kodaira vanishing Theorem all of which depend
on the cohomology theory of sheaves.

Finally, let’s list some results which we won’t prove.

Theorem 2.15 (Bertini’s Theorem). Let X be a compact complex sub-
manifold of Pn. There exists a hyperplane H ⊂ Pn such that V = X∩H
is a complex submanifold of X.

Theorem 2.16 (Lefschetz Hyperplane Theorem). With the same as-
sumption as in Theorem 2.15. Then the map Hq(X,Q) → Hq(V,Q)
induced by the inclusion V → X is an isomorphism for q ≤ n−2 where
n is the complex dimension of X.

Using Bertini’s theorem, we can construct many projective mani-
folds. Let ϕd : Pn → PN be the d-uple embedding,

Pd → PN , [z0, . . . , zn]→ [u0, . . . , uN ]

where {u0, . . . , uN} is the collection of all monomials such as zd0 , z
d−1
0 z1, . . . , z

d
n.

By abuse of notations, we also use [u0, . . . , uN ] as the homogeneous
coordinates of PN . By Bertini’s theorem, take a hyperplane H =
{a0u0 + . . . aNuN = 0} of PN such that H ∩ϕd(Pn) is a submanifold of
ϕd(Pn). H ∩ ϕd(Pn) is isomorphic to a smooth hypersurface Y of Pn
given by a degree d homogeneous polynomial F = a0z

d
0+. . .+aNz

d
n. We

can use the adjunction formula to calculate the canonical line bundle
KY .

First of all, the line bundle [Y ] ∼= [dH0] where H0 is the hyperplane

{z0 = 0}. This is because the meromorphic function
F

zd0
has its asso-

ciated divisor to be Y − dH0. Thus divisors Y and dH0 are linearly
equivalent.

By the adjunction formula,

KY
∼=
(
KPn ⊗ [Y ]

)
|Y ∼=

(
[−(n+ 1)H0]⊗ [dH0]

)
|Y = [(d− n− 1)H0]|Y .

Let n = 2. When d = 1, Y is a line in P2. When d = 2, Y is
a conic curve still isomorphic to P1. This can be seen via the 2-uple
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embedding: [x, y] ∈ P1 → [x2, xy, y2] ∈ P2. If we use [u,w, v] as the
homogeneous coordinates of P2, the image of the 2-uple embedding
is given by uv − w2 = 0, a conic curve. Other conic curves can be
mapped to this conic via automorphisms in PGL(2) = P

(
GL(3,C)

)
.

Therefore in both cases above, KY has no global non-zero sections.
When d = 3, KY

∼= Y × C and thus dimΓ(Y,KY ) = 1. This is the
cubic curve which is an elliptic curve. When d ≥ 4, KY

∼= [(d−3)H0]|Y
and dimΓ(Y,KY ) ≥ 1. In fact, one can calculate that dimΓ(Y,KY ) =
(d− 1)(d− 2)/2 > 1.

Let n = 3. When d = 1, 2, 3, KY
∼= [(d − 4)H0]|Y has no non-zero

global sections. For d = 1, Y is just isomorphic to P2. For d = 2, the
quadric surface is isomorphic to P1 × P1. This can be seen as follows.
Consider the map f : P1 × P1 → P3, [x, y]× [u, v]→ [xu, xv, yu, yv]. If
we use [z0, z1, z2, z3] as the homogenous coordinates of P3, the image
of the map f is given by the equation z0z3 − z1z2 = 0, i.e., a quadric
surface. When d = 4, KY

∼= Y × C is a trivial line bundle, similar
to the elliptic curve for dimensional one case. Such a surface is called
K3 surface. When d > 4, KY

∼= [(d − 4)H0]|Y with d − 4 > 0. Such
surfaces are called general type.

Let n = 4, When d = 1, 2, 3, 4, KY
∼= [(d− 5)H0]|Y has no non-zero

global sections. When d = 5, KY
∼= Y × C is a trivial line bundle,

similar to K3 surfaces. It is called the Calabi-Yau three-fold. When
d > 5, Y is called general type and KY

∼= [(d− 5)H0]|Y with d− 5 > 0.

3. Sheaves and cohomologies of sheaves

Example 3.1. Let X be a complex manifold, U be an open subset of
X. Let O(U) be the set of holomorphic functions on U . O(U) is an
abelian group. For two open subsets U ⊂ V , the restriction map

rV,U : O(V )→ O(U), rV,U(f) = f |U
is a group homomorphism. rU,U is an identity map. We have the
following properties:

(i) For any triple of open subsets U ⊂ V ⊂ W , we have rW,U =
rV,U ◦ rW,V .

(ii) For a collection of open sets Uα ⊂ X, let U = ∪αUα. If h ∈
O(U) and rU,Uα(h) = 0, then h = 0.

(iii) If fα ∈ O(Uα) and if rUα,Uα∩Uβ(fα) = rUβ ,Uα∩Uβ(fβ), then there
exists h ∈ O(U) such that rU,Uα(h) = fα.

We define the stalk OX,p to be the group

{(f, U) | f ∈ O(U), U is an open subset containing p}/ ∼
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where the equivalence relation ∼ is defined as (f, U) ∼ (g, V ) if and
only if there exists an open subset W containing p, W ⊂ U ∩ V such
that f |W = g|W . The stalk OX,p = { converging power series at p }.

So we have seen an example of a sheaf.

Definition 3.2. F is called a sheaf over X if for any open subset U of
X, there exists an abelian group F(U). For any two subsets U ⊂ V .
there exists a restriction map rV,U : F(V ) → F(U) which is a group
homomorphism satisfying the properties (i), (ii) and (iii) above with O
replaced by F and an additional property F(∅) = 0 and rUU = id.

Any element f ∈ F(U) is called a section of F over U .

The sheaf OX we constructed in the Example 3.1 is called the struc-
ture sheaf of X. Note that OX is also a sheaf of rings since each OX(U)
is a ring.

If, in addition, F (U) is an OX(U)-module for any open subset U ,
and the restriction maps rV,U are compatible with module structures,
then F is called a sheaf of OX-module.

We can define the stalk of the sheaf F at a point p as

Fp = {(f, U) | f ∈ F(U), U is an open subset containing p}/ ∼
where the equivalence relation ∼ is defined as (f, U) ∼ (g, V ) if and
only if there exists an open subset W containing p, W ⊂ U ∩ V such
that rU,W (f) = rV,W (g).

Example 3.3.

(i) The constant sheaf Z is defined as Z(U) = Z for any connected
open subset U and the restriction map is the natural one.

(ii) Ωp
X : Ωp

X(U) = {holomorphic p-forms on U} and the restriction
map is the natural one.

(iii) The ideal sheaf IS of a subvariety S of X:

IS(U) = {holomorphic functions on U vanishing on S ∩ U}
and the restriction map is the natural one.

(iv) O∗X : O∗X(U) is the multiplicative group of nonvanishing holo-
morphic functions on U .

Let π : E → X be a holomorphic vector bundle over X. There is a
sheaf associated with E, denoted by OX(E), defined as

OX(E)(U) = {holomorphic sections of E|U}.
One can check that OX(E) is a sheaf of OX-module. Moreover, for any
point p ∈ U , take a local trivialization ϕ : E|U → U × Cr where r is
the rank of E. Hence a holomorphic section σ of E|U can be written
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as (f1, . . . , fr) where fi is holomorphic over U . Therefore OX(E)(U) is
isomorphic to OX(U)⊕ . . .⊕OX(U) as modules. We call this type of
sheaves locally free. Hence a holomorphic vector bundle corresponds to
a locally free sheaf. Converse is also true, i.e., a locally free sheaf E cor-
responds to a holomorphic vector bundle E such that E = OX(E). So
sometimes we don’t distinguish the difference between E and OX(E).

Example 3.4. The trivial line bundle X×C corresponds to the struc-
ture sheaf OX

Given a divisor D, it corresponds to the line bundle [D] which cor-
responds to the rank-1 locally free sheaf OX([D]). By abuse of the
notation, we shall use OX(D) to denote OX([D]) and call it an invert-
ible sheaf.

Definition 3.5. Given two sheaves F and G on X. ϕ : F → G is
called a sheaf morphism if for any open subset U of X, there exists a
homomorphism of groups ϕU : F(U)→ G(U) which is compatible with
the restriction maps, i.e., rV,U ◦ ϕV = ϕU ◦ rV,U .

If, in addition, F and G are sheaves of OX-modules and ϕU is a
morphism of OX(U)-modules, then ϕ is called a morphism of sheaves
of OX-modules.

Example 3.6. Let S be a subvariety of X. The inclusion map IS →
OX is a morphism of sheaves of OX-modules.

The inclusion map ϕU : Z(U) → OX(U) provides a morphism of
sheaves from the constant sheaf Z to the structure sheaf.

The exponential map

expU : OX(U)→ O∗X(U), f ∈ OX(U)→ e2πif ∈ O∗X(U)

is a morphism of sheaves from OX to O∗X .

Given a morphism ϕ : F → G between two sheaves, it is easy to see
that it induces a morphism ϕp : Fp → Gp between the stalks of the
sheaves at a point p ∈ X. ϕ is called injective (or surjective ) if ϕp is
injective (surjective respectively) for every point p ∈ X. One can show
as an exercise that ϕ is injective if and only if for any open subset U
of X, the map ϕU : F(U) → G(U) is injective. The similar statement
for surjection doesn’t hold.

Example 3.7. The inclusion map Z → OX is an injection. The ex-
ponential map exp : OX → O∗X is surjective. This can be checked as
follows. Let (f, U) be an element in O∗X,p. We can assume that U is

simply connected. Hence there exists g ∈ OX(U) such that f = e2πig.
Hence expp((g, U)) = (f, U). In fact, the following sequence is exact,
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i.e., (use as a definition) it is an exact sequence for stalks at every point
of X,

0→ Z→ OX → O∗X → 0. (3.1)

The exactness at the middle term is easy to check.
If we take X = C, take U = C − 0. Then z ∈ O∗X(U). But there

doesn’t exist any f ∈ OX(U) such that exp(f) = z. Thus surjection
of a sheaf morphism ϕ : F → G doesn’t imply ϕU : F(U) → G(U) is
surjection.

Example 3.8. Let S be a subvariety (not necessarily smooth) of X,
but we assume that it is smooth for the simplicity. One can check the
following exact sequence is exact:

0→ IS → OX → OS → 0

where the last morphism is the restriction map from X to S.
Assume S is of codimension one (the following statement is also true

when S is singular). Let s0 be the holomorphic section of [S]. Since
OX(−S) = OX(S)∗, we will have a morphism s0 : OX(−S) → OX .
One can check that the image of this map is IS. Hence we get another
exact sequence

0→ OX(−S)→ OX → OS → 0 (3.2)

Now let’s define the Cech cohomology of sheaves.
Let F be a sheaf on X, U = {Uα} be a locally finite open covering of

X. We define the set of p-cochains as follows: C0(U,F) =
∏

αF(Uα),
C1(U,F) =

∏
α 6=β F(Uα ∩ Uβ), etc. If σ = {σα0...αp} ∈ Cp(U,F), we

require that σα0...αp = (−1)sign(τ)στ(α0)...τ(αp) where τ is a permutation
on p+ 1 letters. There is an operator

δ : Cp(U,F)→ Cp+1(U,F)

defined as follows:

(δσ)α0...αp+1 =

p+1∑
j=0

(−1)jσα0...α̂j ...αp+1|Uα0∩...∩Uαp+1

where α̂j means that this term is deleted.
A p-cochain σ is called a cocycle if δσ = 0, and a coboundary if

σ = δτ for some (p − 1)-cochain τ . We can check that δ2 = 0. Hence
Im(δ : Cp−1 → Cp) is contained in Zp(U,F) = Ker(δ : Cp → Cp+1).
We define

Hp(U,F) =
Zp(U,F)

δ(Cp−1(U,F))
.
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If U is a “good” covering, then Hp(U,F) is independent of the covering
and called the cohomology of the sheaf F , denoted by Hp(X;F). We
use hk(X;F) to denote the dimension of the vector space Hk(X;F) if
F is a coherent sheaf of OX-module.

Let {σα} ∈ Kerδ = H0(X;F). Then

δ(σ)αβ = σβ|Uα∩Uβ − σα|Uα∩Uβ .

Thus by the definition of sheaves, there exists a section s ∈ F(X) such
that s|Uα = σα. Therefore H0(X;F) = F(X) = Γ(X;F).

One sees that H0(X;OX(D)) is the space of holomorphic sections of
the line bundle [D], or OX(D)(X).

Using the definition, we can check that Pic(X) = H1(X;O∗X) as
follows. Take a line bundle L, choose an open cover Uα of X such that
ϕU : LUα → Uα×C is a trivialization. Thus we get transition functions
{gαβ} satisfying

gαβ · gβγ · gγα = 1, gαβ = g−1βα .

The collection {Uα, gαβ} gives an element g in C1(U,O∗X) such that

(δg)αβγ = gβγ · g−1αγ · gβγ = gβγ · gγα · gαβ = 1.

Thus g is a cocycle and hence gives a cohomology class in H1(X;O∗X)
and hence a map from Pic(X) to H1(X;O∗X).This definition is well-
defined due to the fact that different choice of trivilization gives another
cocycle different from the previous one by a coboundary. Then one can
prove that this map is a bijection.

One of the basic properties of the cohomology of sheaves is the fol-
lowing result.

Theorem 3.9. Let 0→ E → F → G → 0 be a short exact sequence of
sheaves on X. Then there exists a long exact sequence of cohomologies:

→ H i(X; E)→ H i(X;F)→ H i(X;G)→ H i+1(X; E)→ (3.3)

where i ≥ 0.

Let’s review some results from Hodge theory.
Let X be a projective nonsingular variety. Then the Hodge Decom-

position Theorem says that Hk(X;C) = ⊕p+q=kHp,q(X), Hp,q(X) =

Hq,p(X), and Hp,q(X) = Hq(X; Ωp
X). We use hp.q to denote the dimen-

sion of the vector space Hp,q(X).

Corollary 3.10. The Betti numbers b2k+1(X) of odd degree are even.

Corollary 3.11. Hq(Pn; Ωp) is zero if p 6= q and is C otherwise.
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Proof. Since H2k+1(Pn;Z) = 0, Hq(Pn,Ωp) = 0 if p + q is odd. Since
H2k(Pn;Z) = Z, 1 = b2k =

∑
p+q=2k

hp,q ≥ hp,2k−p + h2k−p,p = 2hp,2k−p if

p 6= k. Hence h2k−p.p = 0 if p 6= k and hk,k = 1. �

Finally let’s list some terminologies and some facts.

Facts and Terminologies 3.12. Let X be a nonsingular projecrive
variety of dimension n.

(i) hn,0 = dimH0(X;KX) = dimHn(X;OX) is called the geometric
genus of X, denoted by pg.

(ii) h1,0 = h0(X; ΩX) = h1(X;OX) is called the irregularity of X,
denoted by q. From Hodge theory, 2q = b1.

(iii) For a sheaf F , the Euler characteristic of F is defined as

χ(F) = h0(X;F)− h1(X;F) + . . .+ (−1)nhn(X;F).

(iv) Pm = h0(X;OX(K⊗mX )) is called the plurigenera.
(v) Let F be a locally free sheaf onX, thenH i(X;F) = Hn−i(X;F∗⊗
OX(KX))∗. This is a speicial case of Serre duality.

(vi) Let f : X → Pn be a holomorphic embedding. Let [H] be the
hyperplane line bundle on Pn. We will use OPn(1) to denote the
invertible sheaf OPn(H). Let L = f ∗[H]. Such a line bundle is
called very ample. Any line bundle L̃ on X such that L̃⊗m = L
for some m > 0 is called ample. If L is ample and D is a
divisor, then there exists n0 such that D⊗Ln is very ample for
n ≥ n0. If L is ample, then for any line bundle E, there exists
an integer n0 such that hi(X;E⊗L⊗n) = 0 for n ≥ n0 and i > 0
and E ⊗ L⊗n is very ample. Kodaira Vanishing Theorem says
that if L̃ is ample, then Hq(X; Ωp

X ⊗OX(L̃)) = 0 if p+ q > n.

4. Riemann surface

Let D =
∑
mipi be a divisor on a Riemann surface S. We define

the degree of the divisor D to be degD =
∑
mi. If f is a meromorphic

function on S, then f can be regarded as a holomorphic map from S to
P1. The associated divisor (f) is just f−1(0)−f−1(∞) with multiplicity
considered. Hence the degree of the divisor (f) is the number of zeros
of f minus the number of poles of f counted with multiplicity. Each
of these numbers equals the degree of the map f . Hence the degree
of (f) is zero. This implies that the degree is invariant under linearly
equivalence. Therefore we can define the degree of a line bundle L,
denoted by degL, to be the degree of a divisor D such that [D] ∼= L.

Let f : S → S ′ be a non-constant holomorphic map between two
Riemann surfaces S and S ′. For any point q ∈ S, there exists a local
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coordinate z at q and w at p = f(q) ∈ S ′ such that f is locally of the
form w = zµ. µ(q) = µ is called the ramification index of q. If µ(q) > 1,
p = f(q) is called the branch point of f . R =

∑
q∈S(µ(q)−1)q is called

the ramification divisor. Away from the ramification divisor, f is an
unramified covering (topological covering).

Let D =
∑
miqi be a divisor on S. f : S → S ′ be a non-constant

holomorphic map. Let p ∈ S ′ be a point, f−1(p) = {q1, . . . , qs}. Define

f ∗(q) =
s∑
j=1

µ(qj)qj. We extend the definition f ∗ to divisors by linearity.

Now we get a map

f ∗ : Div(S ′)→ Div(S), D → f ∗D.

It is easy to show that if D ∼ D′, f ∗D ∼ f ∗D′ and [f ∗D] = f ∗[D].
Now we want to relate the genus of S to that of S ′.
Take a meromorphic section σ of KS′ . f ∗σ is a meromorphic section

of KS. Around p = f(q) ∈ S ′, f is locally of the form w = zµ. Write

σ locally around p as
h(w)

g(w)
dw where h(w) and g(w) are holomorphic

functions around p. Write

(
h(z)

g(z)

)
p

= `p as divisors. Around p, f ∗σ

is of the form
h(zµ)

g(zµ)
dzµ = µzµ−1

h(zµ)

g(zµ)
dz.

(f ∗σ)q = (µ− 1)q + µ`q = (µ− 1)q + f ∗(`q) = (µ− 1)q + f ∗(σ)q.

Therefore, summing over all q ∈ S ′, we get

(f ∗σ) = R + f ∗(σ).

In terms of line bundles, we get

KS
∼= [R]⊗ f ∗KS′ . (4.1)

If we compute the degree, using that degKS = 2g(S)−2 and degKS′ =
2g(S ′)− 2 (we won’t prove it here), we get

2g(S)− 2 = degR + deg f ∗KS′ = degR + n(2g(S ′)− 2) (4.2)

where n is the degree of the map f . So

χ(S) = nχ(S ′)−
∑
q∈S

(µ(q)− 1). (4.3)

These formulae are called the Riemann-Hurwitz formulae.
Here are some applications of the Riemann-Hurwitz formulae.

Corollary 4.1. If f : S → S ′ is not a constant map, then g(S) ≥ g(S ′).
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Theorem 4.2 (Riemann-Roch). Let S be a Riemann surface of genus
g, D be a divisor on S. Then we have

h0(S;OS(D))− h1(S;OS(D)) = degD + 1− g.

By Serre duality, the Riemann-Roch formula can also be written as

h0(S;OS(D))− h0(S;OS(KS −D)) = degD + 1− g. (4.4)

Lemma 4.3. Let D be a divisor on S, if degD < 0, then h0(S;OS(D)) =
0.

Let’s look at some applications of Riemann-Roch formula.

Example 4.4. Let S be a Riemann surface with genus g = 0. Let p
be a point on S. By the Riemann-Roch formula, we have

h0(S;OS(p))− h0(S;OS(−p+KS)) = 1 + 1 = 2.

Since deg(KS − p) = −3 < 0, h0(S;OS(−p + KS)) = 0. Hence
h0(S;OS(p)) = 2. Take two linearly independent sections s0, s1 ∈
H0(S;OS(p)). H0(S;OS(p)) is clearly base-point-free. Then s0/s1 de-
fines a holomorphic map to P1 with degree equal to one. Hence it is an
isomorphism. Therefore every genus zero Riemann surface is isomor-
phic to P1.

Exercise 4.5. Let S be a Riemann surface, p1, . . . , pr ∈ S be points on
S. Then there is a meromorphic function on S having poles (of some
order ≥ 1) at each of the pi and holomorphic elsewhere.

Exercise 4.6. Let S be a genus two Riemann surface. The canonical
linear system P(H0(S;OS(KS))) determines a morphism f : S → P1 of
degree 2. Show that it is ramified at exactly six points with ramification
index 2 at each point. f is uniquely determined up to an automorphism
of P1. So S determines an (unordered) set of 6 points of P1 up to
automorphisms of P1.

Theorem 4.7. Let D be a divisor on a Riemann surface S of genus g.

(i) If degD ≥ 2g, then the linear system |D| has no base points.
(ii) If degD ≥ 2g + 1, then ϕ|D| is an embedding.

Proof. For (i), let p be a point on S, consider the exact sequence

0→ OS(−p)→ OS → Op → 0.

Tensor the exact sequence by OX(D), we get

0→ OS(D − p)→ OS(D)→ OS(D)|p → 0. (4.5)
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Take the cohomologies of the sheaves in the exact sequence (5.5), we
get an exact sequence

H0(OS(D))→ H0(OS(D)|p)→ H1(OS(D − p)).
Since deg(p − D + KS) ≤ 1 − 2g + 2g − 2 = −1, h1(OS(D − p)) =
h0(OS(KS −D+ p)) = 0. Hence the map H0(OS(D))→ H0(OS(D)|p)
is a surjection. Therefore there exists a section s ∈ H0(OS(D)) such
that s(p) 6= 0. Thus the linear system |D| is base point free.

For (ii), take two distinct points p, q on S. Consider the exact se-
quence

0→ OS(−p− q)→ OS → Op ⊕Oq → 0.

Tensor it by OS(D), we get another exact sequence

0→ OS(D − p− q)→ OS(D)→ OS(D)|p ⊕OS(D)|q → 0. (4.6)

Take the cohomologies of the sheaves in the exact sequence (4.6), we
get an exact sequence

H0(OS(D))→ H0(OS(D)|p)⊕H0(OS(D)|q)→ H1(OS(D − p− q)).
Since deg(p + q − D + KS) ≤ 2 − 2g − 1 + 2g − 2 = −1, h1(OS(D −
p− q)) = h0(OS(KS −D+ q+ p)) = 0. Hence the map H0(OS(D))→
H0(OS(D)|p) ⊕ H0(OS(D)|q) is a surjection. Therefore there exists
a section s ∈ H0(OS(D)) such that s(p) = 0 but s(q) 6= 0. Thus
ϕ|D|(p) 6= ϕ|D|(q), i.e., the map ϕ|D| is one-to-one.

Let p ∈ S, consider the exact sequence

0→ OS(−2p)→ OS → O2p → 0.

Tensor it with OS(D) and take cohomologies, we get

H0(OS(D))→ H0(OS(D)|2p)→ H1(OS(D − 2p)).

By the same argument as above, the map H0(OS(D))→ H0(OS(D)|2p)
is surjective. Hence there exists a section s0 ∈ H0(OS(D)) such that
s0(p) = 0 and p is a simple zero for s0. Let s1, . . . , sn be sections of
H0(OS(D)) such that {s0, s1, . . . , sn} is a basis of H0(OS(D)). Without
loss of generality, assume sn(p) 6= 0. So

ϕ|D|(x) = [s0(x), s1(x), . . . , sn(x)] ∈ Pn, and ϕ|D|(p) ∈ Un.
So near p, we have

ϕ|D| : ϕ
−1
|D|(Un)→ Un, x→ (

s0(x)

sn(x)
, . . . ,

sn−1(x)

sn(x)
).

Since s0(x) vanishes at p only once, if z is a coordinate near p, then
s0(x)/sn(x) = h(z)z where h(p) 6= 0. Therefore the differential of the
map ϕ|D| has rank equal to one at p. So it is an embedding. Note
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that another choice of the basis of H0(OS(D)) gives another map to
Pn which is related to the original one by an automorphism of Pn. �

Example 4.8. Let S be an elliptic curve. Let D be a divisor on
S of degree three. The canonical divisor KS is trivial. Hence from
Riemann-Roch, we get

h0(S;OS(D))− h0(S;OS(−D)) = degD + 1− g = 3.

Since deg(−D) = −3 < 0, h0(S;OS(−D)) = 0. Hence the map ϕ|D|
embeds S into P2. So every elliptic curve is a plane curve.


