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ABSTRACT: Extensive experimental studies have shown that
numerous ordered phases can be formed via the self-assembly of T-
shaped liquid crystalline molecules (TLCMs) composed of a rigid
backbone, two flexible end chains, and a flexible side chain.
However, a comprehensive understanding of the stability and
formation mechanisms of these intricately nanostructured phases
remains incomplete. Here, we fill this gap by carrying out a
theoretical study of the phase behavior of TLCMs. Specifically, we
construct phase diagrams of TLCMs by computing the free energy
of different ordered phases of the system. Our results reveal that
the number of polygonal edges increases as the length of the side
chain or interaction strength increases, consistent with exper-
imental observations. The theoretical study not only reproduces the experimentally observed phases and phase transition sequences
but also systematically analyzes the stability mechanism of the polygonal phases.

■ INTRODUCTION
Liquid crystalline molecules (LCMs) are a class of soft materials
that can self-assemble into numerous ordered structures in both
crystalline states and liquid crystalline states.1 The rich phase
behavior and unique properties of LCMs make them useful
advanced materials with applications in many fields such as
biomedical engineering, electronics, and communications.2−5

Among the many types of LCMs, the T-shaped liquid crystalline
molecules (TLCMs), composed of a rigid backbone with two
incompatible end blocks and a flexible side chain, have been
extensively studied experimentally,6−18 revealing that these
LCMs can self-assemble into an amazing array of complex
ordered phases. Specifically, increasing the side chain length
results in an interesting phase transition sequence of one-
dimensional smectic phases → simple polygons → giant
polygons → three-dimensional lamellar phases → three-
dimensional bicontinuous cubic networks. Besides providing a
platform for engineering intricately nanostructured materials,
the TLCMs offer an interesting model system to study the self-
assembly and stability of complex ordered phases from
macromolecular systems containing rigid and flexible compo-
nents.
Theoretical and simulation studies can provide a good

understanding of the phase behavior of self-assembling macro-
molecules. For the case of TLCMs, several simulation methods
have been used to investigate their self-assembly. In particular,
molecular dynamics of coarse-grained models has been
employed to explore the phase behaviors of several TLCM
systems.19−22 These studies observed the formation of layered
phases, simple polygons, and three-dimensional bicontinuous

cubic networks. Furthermore, dissipative particle dynamics
simulations23−26 have been utilized to study the influence of side
chain length, temperature, and hydrogen bonding on the phase
behavior of TLCMs, and observed layered, simple polygonal,
giant polygonal, and gyroid phases. Monte Carlo simulations27

have been used to study the role of entropy players in self-
assembled layered and hexagonal phases. These simulation
studies of TLCMs mainly looked at the layered phases and
simple polygons, with limited results of giant polygons. A
comprehensive understanding of the stability and formation
mechanisms of these intricately liquid crystalline polygons
remains incomplete.

In this work, we report a theoretical study of the phase
behavior of TLCMs using the self-consistent field theory
(SCFT), which is a flexible and powerful theoretical framework
for analyzing the equilibrium phase behaviors of inhomogeneous
macromolecular systems. It has been successfully applied to
flexible and semiflexible polymeric systems.28−36 In our SCFT
study of the TLCMs, the rigid liquid crystalline segments are
described as wormlike chains with liquid crystalline interactions,
whereas the end- and side-chains are modeled as flexible
Gaussian chains. The resulting SCFT equations represent a
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great computational challenge due to the existence of both
flexible and semiflexible components. We overcome this
challenge by developing an efficient and precise parallel
algorithm to solve the SCFT equations, enabling us to obtain
solutions corresponding to many polygonal and layered phases.
The thermodynamic stability of these ordered structures is
examined by comparing their free energy. Phase diagrams of the
system are constructed in the plane spanned by the volume
fraction of the side chain and interaction strength. Furthermore,
we model the experimental process by changing the number of
side chain monomers and obtain a phase transition sequence
that is consistent with experimental observations.

■ MODEL AND METHODS
We consider an incompressible melt consisting of n TLCMs in a volume
V. Each TLCM, with a degree of polymerization N, consists of five
blocks constructed from three chemically distinct monomers (A, B, R),
as shown schematically in Figure 1. The number of monomers for the

five blocks is denoted by Ni = f iN, where f i is the volume fraction of the i
block, i = A1, A2, B, R1, R2. It is noted that fA d1

+ fA d2
+ f B + f R d1

+ f R d2
= 1, NA d1

+ NA d2
+ NB + NRd1

+ NR d2
= N. The statistical segment lengths of

monomers α are bα (α ∈ {A, B, R}), respectively. We employ the
Gaussian chain model and the wormlike chain model to describe
flexible and semiflexible blocks, respectively.37 The conformation of a
block is described by a space curve Rα

i (s) (s ∈ Iα), where IA = IA d1
∪ IA d2

=
[0, fA d1

] ∪ [0, fA d2
], IB = [0, f B], and IR = IR d1

∪ IR d2
= [fA d1

, fA d1
+ f R d1

] ∪ [fA d2
, fAd2

+
f R d2

], which specifies the position of the s-th monomer in the α-block of
the i-th chain. According to this definition, the normalized
concentrations of monomers A, B, and R at a spatial position r are

r r R

r r R
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where ρ0 is the per unit volume of density. The incompressibility
condition requires r r r( ) ( ) ( ) 1A B R+ + = .

There are various order parameters to describe the orientational
order of rigid segments.38 Here, we choose the two-dimensional order
parameter
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where ui(s) = dRR
i(s)/ds is the unit tangent vector to the semiflexible

block at contour location s. The stretching conformational energy of
noninteracting flexible chains is
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The bending conformational energy of noninteracting semiflexible
blocks is

H
b

s
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where λ is the stiffness of the semiflexible block. The energy of the
parallel alignment between semiflexible chains, described using the
Maier−Saupe type of orientational interaction

S r S r rH
2

( ): ( )dS
0= (5)

where Maier−Saupe parameter η represents the magnitude of the
orientational interaction that favors parallel alignment of the semi-
flexible segments. Following the standard Flory−Huggins approach, the
interaction potential HF of the system is given by

r r r r

r r r r

r r r r r

H ( ) ( ) 2 ( ) ( )

( ) ( ) 2 ( ) ( )

2 ( ) ( ) ( ) ( ) d

F AA A A AB A B

BB B B AR A R

BR B R RR R R

0= [ +

+ +

+ + ] (6)

where the Flory−Huggins interaction parameter ij (i, j ∈ {A, B, R})
represents the interaction between monomers i and j. It is assumed that
these interaction parameters ij can be positive or negative, representing
repulsive and attractive interactions, respectively. Hydrogen bonding is
commonly modeled by attractive interaction,39 i.e., 0ij < . Consid-
ering the incompressible condition and ignoring the contributions from
terms linear in the monomer density, the interaction potential HF
becomes

r r

r r r r r

H ( ) ( )

( ) ( ) ( ) ( ) d

F AB A B

AR A R BR B R

0= [

+ + ] (7)

where the effective Flory−Huggins parameters are given by
2 ( )ij ij ii jj= + .

The particle-based partition functional is

r r r

R

z
n

H H H H d s su

( ) ( ) ( ) 1

exp ( ) ( )

T
n

A B R

i
0 1 F S

=
!

[ + + ]
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where zT is the partition function of the TLCM chain, which is
influenced by kinetic energy. The delta function constrains the local
incompressibility condition. Taking the Hubbard−Stratonovich trans-
formation and the saddle-point approximation,37 the particle form of
the partition function can be transformed into the mean field form of
the partition function as

H M Mexp( , , , )1 2 1 2[ ]+ + (9)

The free energy per chain in the unit of thermal energy kBT at
temperature T, where kB is the Boltzmann constant, can be expressed as

r r r

r r r
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The single-chain free energy, H/nkBT, of the system can be divided
into three parts: interfacial energy Hinter/nkBT, orientation interaction
energy Horien/nkBT, and entropic energy −TS/nkBT

Figure 1. Schematic of TLCM chain containing a rigid backbone block
R (blue), two ends flexible blocks A (red), and a flexible side block B
(green).
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where μ1(r) and μ2(r) are general “exchange” chemical potentials of the
system, μ+(r) is the “pressure” chemical potential to ensure the local
incompressibility of the system,M(r) is the orientation tension field of
semiflexible segments, and Q is the single chain partition function. The
parameters in eqn 10 are defined by

4
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The mean fields ωα(r) (α ∈ {A, B, R}) are the function of μ+(r),
μ1(r), μ2(r)
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The partition function of single chain Q is determined by

r r rQ
V

q s q s d s I
1

( , ) ( , ) ,B B B= †
(13)

where flexible forward propagator qB(r, s) describes the probability of
finding the s-th segment at a spatial position r ranging from s = 0 to s = f B
under the mean field ωB(r). Similarly, the flexible backward propagator
qB

†(r, s) represents the probability from s = f B to s = 0. Both the qB(r, s)
and qB

†(r, s) satisfy the modified diffusion equations (MDEs)
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The propagators qAd1
(r, s), qA d2

(r, s), rq s( , )A1

† , and rq s( , )A2

† of flexible
A1 and A2 blocks satisfy similar MDEs
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where ε = bA/bB measures the conformational asymmetric ratio of
components A and B statistical segment lengths.

The forward propagator qRdj
(r, u, s) (j = 1, 2) of the semiflexible block,

physically represents the probability of finding the s-th segment, from
the end point s = fAdj

to s = fAdj
+ f Rdj

at spatial position r with orientation u

under the mean field ωR. These propagators satisfy the “convection
diffusion” equations
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where ( )r r r Iu M uu( , ) ( ) ( ):R
1
2

= is r, u dependent field, β

= (bR/bB)(6N)1/2 is the aspect ratio of the rods. Similarly, backward
propagators of the semiflexible blocks R1 and R2 can be written as
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The SCFT equations obtained from the first-order variational
derivative of the free energy with respect to the field function are
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Figure 2. Layered structures self-assembled from TLCMs. Smectic-A phases (a1) SmA-AR; (a2) SmA-ABR; Smectic-P phases (b1) SmP-ABR; (b2)
SmP-BR; Cholesteric phases (c1) Chol-AR; (c2) Chol-ABR; and Zigzag phase (d) Zig-ABR. In the second column, red, green, and blue represent
components A, B, and R with high concentrations, respectively. The third, fourth, and fifth columns present the density distributions of components A,
B, and R, respectively. The sixth column exhibits the orientation distribution of the region framed by the white line in the second column. The last
column shows the main diffraction peaks of components A (red) and B (green).
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whereϕα(r) (α ∈ {A, B, R}) and S(r) are themonomer density of theα-
block and the orientational order parameter, respectively.

Theoretical study of the phase behavior of complex block copolymer
systems within the SCFT framework generally follows two steps.40,41

The first step is to construct a library of candidate structures, which
should contain as many candidate phases as possible. The construction
of the candidate phases is inspired by relevant experimental and
simulated findings, as well as theoretical considerations.40,41 The

second step uses an accurate and efficient algorithm to calculate the free
energies of these candidate phases and then analyzes their relative
stability. The phase diagram is then constructed by comparing the free
energies of all candidate phases.

In the current study, we are interested in the stability of polygonal
phases and their transition sequences. These two-dimensional
polygonal phases can be regarded as columnar structures because of
their homogeneity perpendicular to the polygonal plane. For these two-
dimensional phases, the computations can be confined to two-
dimensional space. The orientational calculation can be realized on
the unit circle. The most time-consuming step of solving the SCFT
equations is computing these propagators, which are solutions of the
partial different equations. We employed the fourth-order backward
differentiation42 and fourth-order Runge−Kutta methods43 to solve the
flexible and semiflexible propagators equation, respectively. The
pseudospectral method is used to treat both spatial and orientational
variables due to periodic boundary conditions.44−46 An accelerated
hybrid scheme that combines alternate iteration and conjugate gradient
methods is utilized to search for the equilibrium states47 and optimize
the computational box. We carry out a parallel implementation in C++
language, utilizing the FFTW-MPI package,48 to accelerate the SCFT

Figure 3. Simple polygonal phases self-assembled from TLCMs. (a) Triangle; (b) Square; (c) Diamond; (d) Pentagon; (e) Hexagon; and (f) Dual-
Pentagon. The second column presents the morphologies combined with schematic arrangement diagrams, in which A-, B-, and R-rich domains are
plotted in red, green, and blue colors, respectively. The third, fourth, and fifth columns show the density distributions of components A, B, and R,
respectively. The last column shows the main diffraction peaks of components A (red) and B (green).
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computation. Section S2 in the Supporting Information presents a
detailed description of these algorithms.

■ RESULTS AND DISCUSSION
Equilibrium Phases. Based on extensive simulations, we

obtained ten-layered and sixteen-polygonal phases as candidate
phases for the TLCMs. The layered phases include smectic-A
(SmA-AR, SmA-ABR, SmA-AB), smectic-P (SmP-ABR, SmP-
BR, SmP-AB), cholesteric (Chol-AR, Chol-ABR, Chol-AB), and
zigzag (Zig-ABR) phases. More detail of smectic phases can
refer to Section S3. The density distributions of components A,
B, R, and the local orientation distribution of component R in
these layered phases are presented in Figures 2 and S2. The
diffraction patterns obtained by Fourier transformation (see
Section S2.1 for details) of the density distributions are also
presented in these figures. The primary diffraction patterns of
components A and B are marked with red and green dots,
respectively. The sizes of these dots are proportional to the
intensities of diffraction peaks. We scale the size of the
diffraction peak dots of component A to be smaller than those
of B to ensure that the main green dots will not be obscured by
the red dots.
The polygonal phases are classified into simple polygons

(Figure 3) and giant polygons (Figures 4 and 5), based on the
number of R-rich domains on the polygonal edges. In simple
polygons, the number of polygonal edges is equal to the number

of R-rich domains, whereas in giant polygons, the number of
polygonal edges is smaller than the number of R-rich domains.
The naming rules for these polygons are determined by both
their polygonal shape (PS) and the number of R-rich domains
(NR) on the polygonal edges, denoted as PSNR. For the simple
polygons, the subscript is omitted. Figures 3−5 display the
polygonal structures combined with molecular arrangement
diagrams, the density distributions of components A, B, and R,
and the diffraction patterns of components A and B. In simple
polygons, the edges, vertices, and interiors of the Triangle,
Diamond, Square, Pentagon, and Hexagon are composed of R-,
A-, and B-rich domains. The density distribution of A- and B-rich
domains in the Dual-Pentagon9 exhibits a reciprocal relationship
to that of the Pentagon, as illustrated in Figure 3f. The phases in
Figure 5m,n are named as Hexagon10 having a hexagonal shape
containing ten R-rich domains. The phase depicted in Figure 5m
has more pronounced stretching on the B-rich domains, causing
deformation of the hexagonal shape. This phase is named S-
Hexagon10, with the ‘S’ prefix indicating more stretching on the
B-rich domains.

We focus on studying the influence of the side chain length
and the block−block interactions on the stability of polygonal
phases. To ensure the stability of polygonal phases, a specific set
of parameters, ε = 1, λ = 300, β = 6, η = 0.35, f R d1

= f Rd2
= 0.10, fA d1

=
(1 − f B − f Rd1

− f R d2
)/2 and fA d2

= fA d1
, are selected, while the rest of

Figure 4.Giant polygonal phases: (g) Diamond8; (h) Square8; (i) Hexagon8; (j) Pentagon9; and (k) Square10. Themeanings represented by subfigures
are similar to Figure 3.
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parameters could vary. To guarantee sufficient precision of the
SCFT calculations, we scan the phase space by primarily using
discrete grids according to ordered phases and interaction
strengths (see Table S1). The termination criterion of self-
consistent field iteration is the free energy difference between
two consecutive iterations less than 10−8. For convenience, we
designate χAB as χ and use it as a reference, and express χBR and
χAR as functions of χ.

Stability of Polygonal Phases. In the experiments, the end
A blocks can form hydrogen bonds.11,16 We can use attractive
A−A interactions AA with negative value to model the
hydrogen-bond interaction, arising the variation of effective
Flory−Huggins parameters χij.

39 Consequently, we investigate
the influence of the attractive A−A interactions of stabilizing
polygonal phases. We simulate the phase behavior for distinct χij
with χ ∈ [0.36, 0.44]. Seven phase diagrams in the (χ, f B)-plane
have been constructed with combinations of the parameters χij,
as presented in Figure S3. The free energy difference in
determining the phase boundaries is about 10−4. It is evident
that seven phase diagrams exhibit similar phase behaviors. As f B
increases, phase transitions occur, from layered structures, to
simple polygons, to giant polygons, and then to layered
structures again. These results demonstrate that a slight
perturbation of χij has negligible influence on the relative
stability of candidate structures, and only leads to a slight change
in phase boundaries. These phase diagrams also allow us to

systematically investigate the impact of interaction strength by
considering only one of the seven cases. Specially, we expand χ
to [0.20, 0.46], with χAR = χ + 0.04, χBR = χ − 0.02, and vary f B. A
detailed phase diagram, as shown in Figure 6, can be constructed
with respect to f B and χ. This phase diagram presents much rich
phase behaviors by varying χ and f B. In the following, we will
carefully analyze the impact of parameters χ and f B on the phase
transitions.

Figure 5.Giant polygonal phases: (l) Pentagon10; (m) S-Hexagon10; (n)Hexagon10; (o) Square12; and (p)Hexagon12. Themeanings of each subfigure
are similar to Figure 3.

Figure 6. Phase diagram of TLCMs in the χ-f B plane with χAR = χ +
0.04, χBR = χ − 0.02, N = 100, f R d1

= f Rd2
= 0.10. The red and blue dashed

lines mark the phase sequence of χ = 0.44 and f B = 0.58, respectively.
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Influence of Interaction Parameter χ. We examine the
phase transition path from layers to simple polygons, and to
giant polygons by varying χ and fixing f B. When f B = 0.58, a
phase sequence emerges, taking the system from the SmP-ABR
(0.25 ≤ χ < 0.27) to the simple Hexagon polygon (0.27 ≤ χ <
0.293), and to the giant Hexagon8 polygon (χ ≥ 0.293), as
shown by the blue dash line in Figure 6. The energy curves,
taking the SmP-ABR phase as the baseline, are plotted in Figure
7a. To better analyze the factors influencing the stability, we split

the free energy into three parts, the interfacial energy Hinter/
nkBT, the orientation interaction energy Horien/nkBT, and the
entropy energy −TS/nkBT, see the definition in eqn 11. The
density distribution demonstrates that polygonal structures have
more A-, B-, and R-rich subdomains than the layered SmP-ABR,
and Hexagon8 has the most subdomains among the three
patterns. As shown in Figure 7b, the more subdomains the
structure has, the larger interfacial energy the system has. On the
other hand, more subdomains provide an opportunity that
molecular chains havemuch freedom of stretch, thus leading to a
lower entropy energy, as Figure 7d illustrates. Meanwhile, the
orientation distribution of polygonal phases, including the
Hexagon and theHexagon8, are more disordered than that of the
layered SmP-ABR (see Figure S4), arising a larger orientation
interaction energy (see Figure 7c). Interestingly, for the
polygonal phases, as χ increases, the orientation interaction
energies of the Hexagon and the Hexagon8 have an intersection
point at χ = 0.324. Below this intersection, the Hexagon has
lower orientation interaction energy. Otherwise, the Hexagon8
has a lower value. The reason can be attributed to the Flory−
Huggins interaction.
As shown in Figure 8, with an increase of χ from 0.28 to 0.34,

the peak of the R-rich domain in the Hexagon increases from 0.4
to 0.63, with an increment of 0.23. While the peak of the R-rich
domain in the Hexagon8 rises from 0.47 to 0.65, with an
increment of 0.18. This indicates that as χ increases, the A−R
and B−R repulsion interactions in the Hexagon increase faster
than that of Hexagon8, yielding a disordered orientation
distribution. Consequently, the orientation interaction energy
in the Hexagon phase gradually exceeds that in the Hexagon8
phase. During the subtle competition among three parts of
energies, the above-mentioned phase sequence emerges.

Influence of Volume Fraction f B. Here, we consider the
effect of volume fraction f B on the stability of candidate patterns.
For a fixed χ = 0.44, an interesting phase sequence of Chol-AR
→ SmA-AR → SmA-ABR → Chol-ABR → Triangle → Dual-
Pentagon → Square → Pentagon → Hexagon → Hexagon8 →
Hexagon10 → SmP-AB appears as f B increases. The free energy
curves of these structures relative to the homogeneous phase are
plotted in Figure 9a. To better analyze the factors of influencing
stability, we again separate the free energy into three parts, the
interfacial energy, the orientational interaction energy, and the
entropic energy. When the volume factor f B is smaller than 0.14,
the length of the B subchain is too small to separate from the R-
rich domain, leading to the formation of the two-layered phases
of Chol-AR (0.045 < f B ≤ 0.065) and SmA-AR (0.065 < f B ≤
0.14). As f B increases, monomer-B can condensate into the new
B-rich layer, causing three layered patterns of SmA-ABR (0.14 <
f B ≤ 0.214) and Chol-ABR (0.214 < f B ≤ 0.218). It is noted that
the SCFT calculation predicts stable Chol-AR and Chol-ABR,
which were not observed experimentally. This discrepancy
might be attributed to the thermodynamic fluctuations, which
are not accurately captured by the SCFT. When 0.218 < f B ≤
0.657, the system enters the stability region of polygonal phases.
Compared to layered phases, polygonal structures possess more
A-, B-, and R-rich subdomains which increase the interfacial
energy (see Figure 9b). These divided subdomains also disrupt
the parallel arrangement of rigid blocks resulting in a small
increase of the orientation interaction energy (see Figure 9c).
On the other hand, these subdomains in polygonal phases also
make the chain arrangement more flexible, thus increasing the
configurational entropy (see Figure 9d). The arising entropy
energy is more than the unfavorable interfacial and orientation
energies, driving the phase transition from layered phases to
polygonal phases. In the range of polygonal phases, as the
relative length of the B block increases, the interior of the B-rich
domain swells. To alleviate the packing frustration of
compressing the B-rich domain, the system increases the
number of polygonal edges, driving a phase transition from
simple polygons to giant polygons when f B > 0.56. Meanwhile,
several novel metastable giant polygons are also observed,
including Square8, Square10, Square12, Diamond8, Pentagon9,
and Hexagon12 which might be stable at more strong
segregation.

Influence of the Side Chain Length. The above
simulations have examined the influence of Flory−Huggins
interaction χ and relative volume factor f B on the stability of
polygonal phases. Previous experiments have demonstrated that
the TLCMs exhibit an interesting phase transition sequence of
SmA-AR → SmA+ → Triangle → Diamond → Square →
Pentagon → Hexagon → Hexagon8 → Hexagon10 →
Pentagon10 → Lamellar → bicontinuous cubic phases when

Figure 7. (a) Free energy, (b) interfacial energy, (c) orientation
interaction energy and (d) entropic energy of the Hexagon (blue line)
and Hexagon8 (green line) relative to the SmP-ABR (red line) along
increasing χ values for fixed χAB = χ, χAR = χ + 0.04, χBR = χ − 0.02, f B =
0.58, f R d1

= f Rd2
= 0.10, and N = 100.

Figure 8. Solid and dashed lines represent the density distributions of
the Hexagon8 and Hexagon, respectively. (a) χ = 0.28, (b) χ = 0.34 for
fixed Lx/4 (see Figure S5), χAB = χ, χAR = χ + 0.04, χBR = χ − 0.02, f B =
0.58, f Rd1

= f R d2
= 0.10, and N = 100.
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the side chain length of TLCMs is increased.7,11,16 In what
follows we theoretically investigate this phase transition
sequence by varying the side chain length. To model the
experimental systems, we use the monomer number Ni (i ∈ {A1,
A2, B, R1, R2}) to describe the block length. Varying Ni is
equivalent to changing the length of the different blocks. Based
on the aforementioned calculations, we fix a set of parameters
χAB = 0.36, χAR = 0.40, χBR = 0.34, NA d1

= NA d2
= 10, NR d1

= NRd2
= 20,

and change NB. With an increase in the side chain length NB, the
SCFT calculations obtain a phase transition sequence of SmA-
AR → SmA-ABR → Triangle → Square → Pentagon →
Hexagon → Hexagon8 → Hexagon10 → SmP-ABR → SmP-BR
→ Nematic phase, as shown in Figure 10. The reason for
forming the nematic phase when 351 ≤ NB ≤ 370 may be
ascribed to the microphase separation of different chemical
components. As a result, the concentration of a rigid backbone in
the R-rich domain is high and can lead to the long-range
orientation order. The theoretical phase transition sequence is
consistent with existing experimental observations.7,11,16 There

are slight differences between the experimental observations and
our theoretical predictions. For example, our theoretical results
indicate that the Pentagon10 andDiamond phases aremetastable
(see Figure S6), while these phases were reported as stable ones
in experiments. This discrepancy might be ascribed to the fact
that our simulation parameters could be not entirely identical to
the experimental conditions, or due to the use of the Gaussian
chain model to describe short flexible chains.

■ CONCLUSIONS
In summary, we have established a SCFT model of TLCMs to
investigate the formation and stability of polygonal phases. The
development of an accurate and efficient numerical method for
SCFT equations enables us to construct a set of phase diagrams
by precisely computing the free energy of different self-
assembled ordered structures. We examined the influence of
the side chain length and the interaction strength on the stability
of polygonal phases and their transitions. We systematically
analyzed the stability mechanism by examining the free energy.

Figure 9. (a) Free energy, (b) interfacial energy, (c) orientation interaction energy, and (d) entropic energy of the candidate phases relative to the
homogeneous phase by varying f B when χAB = 0.44, χAR = 0.48, χBR = 0.42, N = 100, and f Rd1

= f R d2
= 0.10.

Figure 10. Phase transition as NB increases with χAB = 0.36, χAR = 0.40, χBR = 0.34, NA d1
= NAd2

= 10, and NR d1
= NR d2

= 10.
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The resulting phase transition sequences are in good agreement
with experimental observation. Several new metastable polyg-
onal structures and several smectic, cholesteric, and zigzag layers
are also predicted in our study. These theoretical findings fill the
gap between theoretical understanding and experimental
observation of the phases and phase transitions of TLCMs. In
the future, we will investigate complicated phases and phase
transitions in more liquid crystalline molecular systems based on
the SCFT and advanced numerical methods developed in the
current study.
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