BOUNDED ORBITS OF HOMOGENEOUS DYNAMICS
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ABSTRACT. Homogeneous dynamics is a special kind of dynamics given
by Lie groups, and is closely related to Diophantine approximation and
other areas in number theory. In this paper, we survey main problems
and results concerning bounded orbits of homogeneous dynamics,
and discuss their relations with Diophantine approximation problems
including the Oppenheim conjecture, the Littlewood conjecture, and
the Schmidt conjecture.

1. INTRODUCTION

Homogeneous dynamics is a special kind of dynamics. Its phase space is
a homogeneous space of a Lie group, and the dynamical system is induced
by the group multiplication. More precisely, let G be a Lie group!, I' ¢ G
be a closed subgroup, and consider the homogeneous space X = G/T". In
homogeneous dynamics, one studies the natural translation action of another
subgroup H C G on X, examines properties of orbits and invariant measures
of the action, and investigates the asymptotic behavior of the action when
elements in H tend to infinity. This kind of dynamical systems gives rise to
several classical examples, including geodesic flows and horocycle flows on
surfaces of constant negative curvature.

By combining methods from dynamical systems and Lie theory, one is able
to obtain stronger results in homogeneous dynamics than in more general
dynamics. A typical example is Ratner’s theorems for unipotent flows [63],
which state that if the subgroup H is generated by unipotent elements,
then the closures of H-orbits in X are algebraically defined submanifolds,
and the H-invariant measures on X can be also classified in an algebraic
way. For some other important cases of H, similar statements have also
been conjectured and partially proved to be true (see [12, 24, 26, 40, 48]).
On the other hand, certain subgroups I' (for example, SL,,(Z)) carry a large
amount of arithmetic information, and the corresponding dynamical systems
are closely related to number theory. For example, methods and results from
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1Throughout this paper, a Lie group refers to a real Lie group. It is also important
in homogeneous dynamics to consider other topological groups (for example, p-adic Lie
groups), which are not discussed here.
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homogeneous dynamics have been used to solve several important questions
in Diophantine approximation. To list a few:

Margulis proved the Oppenheim conjecture [43, 44];

Kleinbock and Margulis proved the Baker-Sprindzuk conjecture [35];
Einsiedler, Katok and Lindenstrauss made significant progress to-
wards the Littlewood conjecture [25];

Shah established important properties of Dirichlet improvable vec-
tors [68].

There have also been important applications of homogeneous dynamics to
algebraic number theory, analytic number theory, and other fields. See, for
example, [27, 50, 51, 56, 70].

For certain important cases, the action of the subgroup H on the space
X is ergodic, and hence the points in X with non-dense H-orbits form a
set of measure zero. However, the behavior of non-dense orbits reveals the
complexity of the system, and is related to number-theoretic questions. As
such, several types of non-dense orbits, including bounded orbits, divergent
orbits, and orbits whose closures or limit sets miss a given set, have attracted
considerable interest in the last three decades.

In this paper, we give a brief survey of some major problems and results
concerning bounded orbits of homogeneous dynamics and their relations
with Diophantine approximation. The basic setting of homogeneous
dynamics is reviewed in Section 2. Then, in Sections 3-5, we discuss
properties of bounded orbits according to different types of dynamical
systems (namely, unipotent systems, higher rank diagonalizable systems,
and rank-one diagonalizable systems) and their relations with problems
in Diophantine approximation, including the Oppenheim conjecture, the
Littlewood conjecture, and the Schmidt conjecture. For divergent orbits and
other types of non-dense orbits, the reader may consult [7, 17, 23, 32, 37, 39]
and the references therein.

2. BASIC SETTING OF HOMOGENEOUS DYNAMICS

Let G be a connected Lie group, I' C G be a closed subgroup, and
endow the homogeneous space X = G/I" with the natural smooth manifold
structure. For g € G, the translation action of the cyclic group {¢" : n € Z}
on X gives rise to a discrete dynamical system Z x X — X, (n,z) — g"x.
Similarly, for an element £ in the Lie algebra g of G, the one-parameter group
{exp(t§) : t € R} gives rise to a flow R x X — X, (¢,z) — exp(t{)z. More
generally, in homogeneous dynamics, we are interested in the dynamical
system induced by the translation action

Hx X — X, (h,z) — hx

of a general subgroup H C G, with emphasis on properties of its orbits and
invariant measures.
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In order to obtain deep dynamical properties, we need to make some
restrictions on the choices of the subgroups H and I'. First, in studying
the asymptotic behavior of the H-action, we expect that elements in H can
tend to infinity. Thus, we make the following assumption:

(i) H is a noncompact closed subgroup of G (and hence G is also
noncompact).
On the other hand, it turns out that most nontrivial dynamical properties
of the H-action originate from the disconnectedness of I". To simplify the
problem, we assume:
(ii) I is a discrete subgroup of G.

Moreover, in order to employ methods and results from ergodic theory, we
also assume that

(iii) The coset space X of I' admits a G-invariant Borel probability
measure px (which is called the Haar measure and is necessarily
unique).

A subgroup I' C G satisfying conditions (ii) and (iii) is called a lattice in G.
It is said to be cocompact if X is compact, and is non-cocompact otherwise.
A subset F of X is said to be bounded if it has a compact closure. In this
paper, we are mainly concerned with problems of bounded H-orbits in X,
which are nontrivial only when I'" is non-cocompact.

Let us give two basic examples.

Example 2.1. Z" is a cocompact lattice in R”, and the quotient space
R™/Z"™ is an n-dimensional torus.

Example 2.2. Let n > 2. Then SL,(Z) is a non-cocompact lattice in
SL,(R). Throughout this paper, we denote
X = SL,(R)/SLy(Z). (2.1)

A proof of the existence of the invariant probability measure on X, can
be found in [58]. Let us give the short proof of the noncompactness of X,
below.

Proof of noncompactness of X,. Suppose to the contrary that X, is com-
pact. Then there exists a compact subset K C SL,(R) such that
K - SL,(Z) = SL,(R). It follows that
K -7Z"=K-(SL,(Z)-7") = (K -SL,(Z)) - Z"" = SL,(R) - Z" = R".
Thus, there exist sequences (gx) in K and (vg) in Z™ \ {0} with gyvr — 0.
Since K is compact, we may assume that g — ¢g. Hence
vk = g5 (gror) = 9710 =0,

which contradicts v, € Z™ ~\ {0}. O

Regarding boundedness of subsets in X, a criterion is given by Mahler

[42], which serves as the bridge between homogeneous dynamics and
Diophantine approximation.
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Theorem 2.3 (Mahler’s compactness criterion). Let 7 : SL,(R) — X,, be
the projection, that is, w(g) = g - SLy,(Z). Then, for a subset Q of SL,(R),
the set () is bounded in X, if and only if the origin in R™ is an isolated
point of the set {gv: g € Qv € Z"}.

It is worth remarking that not every Lie group has a lattice. It can be
proved that if G has a lattice, then |det(Ad(g))| = 1 for every g € G, where
Ad : G — GL(g) is the adjoint representation. On the other hand, any
connected noncompact semisimple Lie group admits both cocompact lattices
and non-cocompact lattices, and any lattice in a solvable Lie group (if it
exists) must be cocompact. For proofs of these facts and more properties of
lattices, see [46, 54, 58, 72].

One of the most fundamental theorems in homogeneous dynamics is
Moore’s ergodicity theorem [52]. For simple Lie groups?, it reads as follows:

Theorem 2.4 (Moore’s ergodicity theorem for simple Lie groups). Let G
be a connected noncompact simple Lie group with finite center, and I' C G
be a lattice. Then the translation action of G on the homogeneous space
X = G/T is strongly mixing with respect to the Haar measure px, that is,
for any measurable subsets E1, Fy C X, we have

lim px (9B N Ey) = px (Er)px (o).
Gog—o0

In particular, the translation action on X of any noncompact closed subgroup
H C G is ergodic, that is, for any H-invariant measurable subset E C X,
we have

ux(B)=0  or  px(E)=1.

In view of Moore’s ergodicity theorem, it follows that if H C G is a
noncompact closed subgroup, then the H-orbit of almost every point in X
is dense. If X is noncompact, then a bounded H-orbit is non-dense, and
hence the set

{z € X : Hz is bounded} (2.2)

is of measure zero.
We conclude this section by the following two basic examples.

Example 2.5 (Geodesic flows and horocycle flows on surfaces of constant
negative curvature). Let ¥ be a complete surface of constant negative
curvature with finite volume. Then the unit tangent bundle T'Y is
isomorphic to a homogeneous space X = SLo(R)/T", where I' C SL2(R)
is a lattice. The Liouville measure on T'Y can be identified with the Haar
measure on X. Consider the one-parameter subgroups

po{(4 2)ieer) wa o (1 D)urcs)

of SLy(R). The dynamical systems induced by the translation actions of D
and U on X correspond to the geodesic flow and horocycle flow on 713,

2Moore’s ergodicity theorem also holds for irreducible lattices in semisimple Lie groups.
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respectively (see [11]). The investigation of these flows from the viewpoint
of homogeneous dynamics originated from the work of Gelfand and Fomin
[28]. The geodesic flow and the horocycle flow have very different properties.
For example, if ¥ is noncompact, then a bounded D-orbit can be quite
complicated, while every bounded U-orbit is periodic (see [20]).

For more detailed introduction to homogeneous dynamics, the reader may
consult [11, 22, 36, 69].

3. UNIPOTENT SYSTEMS

We examine bounded orbits of homogeneous dynamics according to
different types of the acting group H. First, let us introduce the following
concepts.

Definition 3.1. Let G be a connected noncompact Lie group.

(1) An element g € G is said to be Adg-unipotent if the linear transfor-
mation Ad(g) —idg on g is nilpotent, and is Adg-diagonalizable if
Ad(g) is diagonalizable.

(2) Let I' C G be a lattice, X = G/T', and H C G be a connected
noncompact closed subgroup. The dynamical system induced by
the translation action of H on X is called a unipotent system if H is
generated by Adg-unipotent elements, and is a diagonalizable system
if H consists of Adg-diagonalizable elements.

Unipotent systems and diagonalizable systems are the most important
types of homogeneous dynamics. In a certain sense, the study of the action
of a general subgroup H can be reduced to these two cases. In Example
2.5, the horocycle flow is a unipotent system, while the geodesic flow is a
diagonalizable system.

In this section, we discuss bounded orbits of unipotent systems. It should
be pointed out that if H is noncompact simple, then it follows from the
Iwasawa decomposition that H is generated by Adg-unipotent elements.
Thus, unipotent systems include the case that H C G is a noncompact
simple Lie subgroup.

First, let us consider the case where G = SL3(R), I' = SL3(Z), and
X = X3 (see (2.1)). Let H = SO*(2,1) be the identity component of the
orthogonal group of signature (2,1), which is noncompact and simple. In
the 1980s, Margulis [43, 44] proved the following result.

Theorem 3.2. Every bounded SO (2,1)-orbit in X3 is compact.

The background of Theorem 3.2 is the Oppenheim conjecture in Dio-
phantine approximation. Recall that Meyer’s theorem states that if @) is a
nondegenerate indefinite rational quadratic form on R”, and if n > 5, then
Q(v) = 0 for some v € Z" . {0} (see [67]). Oppenheim [57] conjectured that
for irrational quadratic forms, Meyer’s theorem remains valid in the sense
of approximation. The conjecture was later strengthened to n > 3, and can
be states as follows:
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Conjecture 3.3 (Oppenheim conjecture). Letn > 3, @ be a nondegenerate
indefinite quadratic form on R™. Assume that () is not a constant multiple
of a rational quadratic form. Then, for any € > 0, there exists v € Z" ~. {0}
such that |Q(v)| < €2

It is easy to see that if the conjecture holds for some n = ng, then it
holds for every n > ng. Thus, it suffices to prove the n = 3 case. It was
observed by Cassels and Swinnerton-Dyer [16] (in an implicit form), and
independently by Raghunathan (unpublished), that the n = 3 case of the
conjecture is equivalent to the statement in Theorem 3.2. Thus Theorem
3.2 implies the truth of the Oppenheim conjecture. Before the appearance
of Margulis’ dynamical proof, the conjecture was proved for n > 21 using
methods from analytic number theory. Margulis’ proof relies on the fact that
the group SO™(2, 1) is generated by unipotent elements as well as dynamical
properties of actions of unipotent one-parameter subgroups. It should be
noted that so far there is no number-theoretic proof of the full Oppenheim
conjecture. For quantitative and effective results on the conjecture, see
[29, 41, 47] and the references therein.

We now briefly explain the relation between Theorem 3.2 and the
Oppenheim conjecture. Consider the quadratic form on R? given by

Qo(z1,2,23) = :v% + x% — x§

Every nondegenerate indefinite quadratic form @ on R? is of the form Q =
¢(Qo © g), where ¢ is a nonzero constant and g € SL3(R). The equivalence
of the Oppenheim conjecture and Theorem 3.2 follows from the following
proposition.

Proposition 3.4. Let m : SL3(R) — X3 be the projection. Then the
following statements hold.

(1) The orbit SOT(2,1) - 7(g) is bounded if and only if

inf > 0.
et |Q(v)]

(2) The orbit SOt (2,1) - w(g) is closed if and only if Q is a constant
multiple of a rational quadratic form.

To demonstrate the role played by Mahler’s compactness criterion as the
bridge, let us sketch the proof of (1).

Proof of Proposition 3.4 (1). For any a € R, the group H = SO"(2,1) acts
transitively on every connected component of the surface

{veR*~ {0} : Qo(v) = al.

3The condition n > 3 is necessary: it is easy to verify that |z — (1 + v/2)%z3| > 1 for
any (z1,2) € Z% ~ {0}.
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It follows that for v € R3, |Qo(v)| is small if and only if infyezr ||hv]| is small.
Thus,

inf =0 inf —0
vezlgl\{o}lQ@)! = vezlgl\{o}!Qo(gv)\

= inf inf ||hgv|| =0
veZ3{0} he H

< 0€{hgv:he HwvelZ\ {0}}

In view of Mahler’s compactness criterion, the last condition is equivalent
to the unboundedness of Hr(g). O

Remark 3.5. Proposition 3.4 remains true in higher dimensions. In view
of Meyer’s theorem, it follows that if p,¢ > 0 and n = p+ ¢ > 5, then every
SO™(p, g)-orbit in X,, is unbounded.

In the 1990s, Ratner [59, 60, 61, 62] proved a group of remarkable
theorems concerning unipotent systems, including the measure classification
theorem, the orbit closure theorem, and the equidistribution theorem (see
also [49]). Her orbit closure theorem is as follows:

Theorem 3.6 (Ratner’s orbit closure theorem). Let G be a connected
noncompact Lie group, I' C G be a lattice, X = G/T', and H C G be
a connected noncompact closed subgroup. Assume that H is generated by
Adg-unipotent elements. Then, for every x € X, there exists a connected
closed subgroup L of G containing H such that Hx = Lx.

It is easy to deduce Theorem 3.2 from Theorem 3.6. On the other hand,
Ratner’s work implies the following result.

Theorem 3.7. Under the conditions of Theorem 8.6, if moreover X is
noncompact, then the set (2.2) is contained in a countable union of proper
submanifolds of X, and hence its Hausdorff dimension is less than dim X.

Ratner’s work provides a relatively complete qualitative understanding of
unipotent systems (see [21, 45, 53, 63]). However, as far as the quantitative
and effective aspects are concerned, there are still many open problems. See,
for example, [40, 48].

4. HIGHER RANK DIAGONALIZABLE SYSTEMS

Let us now consider diagonalizable systems, that is, the case where the
acting group H consists of Adg-diagonalizable elements. A diagonalizable
system is said to be of rank-one if dim H = 1, and is of higher rank if
dim H > 1. These two types of systems exhibit quite different features. In
this section we are concerned with higher rank diagonalizable systems. For
such systems, one hopes to establish similar results as in the unipotent case.
However, this project is far from complete. Most progress made so far is in
the case where H is a maximal R-split torus in G.
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To avoid technicalities, let us concentrate on the case where G = SL,,(R),
I' =SL,(Z), and H is the subgroup
A= {diag(e™,... e'") i t; € Rty + -+ +t, =0}

Note that dim A = n — 1, and thus the system is of higher rank if n > 3.
Regarding bounded A-orbits, Margulis [48] conjectured that a statement
similar to Theorem 3.2 holds, that is:

Conjecture 4.1. If n > 3, then every bounded A-orbit in X,, is compact.

In the language of Diophantine approximation, a statement equivalent
to the n = 3 case of Conjecture 4.1 also appeared in the work of Cassels
and Swinnerton-Dyer [16] (see Conjecture 4.6 below). So far, the most
significant progress towards Conjecture 4.1 is made by Einsiedler, Katok
and Lindenstrauss [25]. By studying A-invariant measures on X, they
proved the following result.

Theorem 4.2. If n > 3, then the set
{z € X, : Az is bounded}

has Hausdorff dimension n — 1.

Note that there exist countably infinitely many compact A-orbits in X,.
Thus, the set
{z € X,, : Az is compact}
also has Hausdorff dimension n — 1. The following stronger result is also
proved in [25].

Theorem 4.3. Letn > 3, AT C A be a subsemigroup with an interior point
g € AT. Consider the subgroup

U(g) = {u € SL,(R) : lim ¢ *ug®=1I,}
k——+o0
of SL,(R). Then for every x € X,,, the set
{u € Ul(g) : Atux is bounded}

has Hausdorff dimension 0.

An equivalent formulation of Conjecture 4.1 can be given using the notion
of a minimal set. Recall that for a subgroup S C SL,(R), a nonempty subset
Y C X is S-minimal if it is closed, S-invariant, and contains no nonempty
proper S-invariant closed subset. The following result is proved in [8].

Theorem 4.4. Let n > 3, and let
A;j = {diag(a1,...,an) € A:a; = a;}, 1<i<j<n.

Then the following statements are equivalent.

(1) Conjecture 4.1 holds for n.
(2) Any compact A-minimal set in X, is A;j-minimal for every A;j.
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Conjecture 4.1 and Theorem 4.3 are closely related to the Littlewood
conjecture in Diophantine approximation. For a € R, let (a) denote the
distance of a to the nearest integer, that is, (a) = infxeyz |a — k|. Littlewood
proposed the following conjecture around 1930.

Conjecture 4.5 (Littlewood conjecture). For any a,b € R, we have

inf b) = 0.
;qu<qa><q )

The Littlewood conjecture is one of the most important open problems in
Diophantine approximation. It is proved in [16] that the following conjecture
implies the Littlewood conjecture.

Conjecture 4.6. Let fi, fa, f3 be linearly independent linear forms on R3,
and let F' = f1fofs. Assume that F is not a constant multiple of a rational
polynomial. Then, for any ¢ > 0, there evists v € Z3 ~ {0} such that
|F(v)] <e.

Conjecture 4.6 is comparable in spirit to the Oppenheim conjecture.
Similar to the equivalence of Theorem 3.2 and the Oppenheim conjecture, it
can be proved using Mahler’s compactness criterion that the n = 3 case of
Conjecture 4.1 is equivalent to Conjecture 4.6. Thus Conjecture 4.1 implies
the Littlewood conjecture.

On the other hand, using Theorem 4.3, it is proved in [25] that the
Littlewood conjecture holds up to a set of Hausdorff dimension zero:

Theorem 4.7. The set
{(a,b) € R*: inf ¢(qa)(gb) > 0}
geN
has Hausdorff dimension 0.

To explain the relation between Theorem 4.3 and the Littlewood conjec-
ture, let us consider the subsemigroup

AT = {diag(e", ef2, e (M1 F2)) . 4y 1y > 0} (4.1)
of SL3(R). For a,b € R, denote
1 0 a
ual, = 01 b s xa,b = ua’b . SLg(Z)
0 01

The following statement can be proved using Mahler’s compactness criterion.
Proposition 4.8. The orbit ATz, in X3 is bounded if and only if

inf b) > 0.
;qu<qa><q )

By using Proposition 4.8, it is easy to deduce Theorem 4.7 from Theorem
4.3:
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Proof of Theorem 4.7. Take n = 3 in Theorem 4.3, and let AT be the
subsemigroup given by (4.1). Then g = diag(2,2,1/4) is an interior point
of AT, and we have U(g) = {uqp : a,b € R}. It follows that the set
{(a,b) € R? : A*z,, is bounded} has Hausdorff dimension 0. Now Theorem
4.7 follows from Proposition 4.8. U

5. RANK-ONE DIAGONALIZABLE SYSTEMS

This section is devoted to bounded orbits of rank-one diagonalizable
systems. In this case, it is customary to rewrite the subgroup H as F.
The following statement was first conjectured by Margulis [45], and was
later proved by Kleinbock and Margulis [34] (see also [37]).

Theorem 5.1. Let G be a noncompact Lie group, I' C G be a non-cocompact
lattice, X = G/T', and F be an Adg-diagonalizable one-parameter subgroup
of G. Then the set

{z € X : Fx is bounded} (5.1)

has Hausdorff dimension equal to dim X .

Comparing Theorem 5.1 with Theorems 3.7 and 4.2, a difference can be
seen between rank-one diagonalizable systems and the systems considered in
the previous two sections. It is conjectured in [6] that a statement stronger
than Theorem 5.1 should be true. To state the conjecture, let us first review
the notion of a winning set for Schmidt’s game [64].

Definition 5.2 (Schmidt’s game and its winning sets). Let X be a complete
metric space, S C X be a subset, and «, 5 € (0,1) be real numbers. Two
players, Alice and Bob, play a game on X as follows: Bob starts the game
by choosing a closed ball By C X. After B; is chosen (i > 0), Alice chooses a
closed ball A; C B; of radius « times the radius of B;, and then Bob chooses
a closed ball B;41 C A; of radius 8 times the radius of A;. This gives a
nested sequence
ByDAyD>DB1 DA D

of closed balls. The intersection of all these balls is a one-point set {xo}.
The rule of the game says that Alice wins if ro, € S, and Bob wins otherwise.
The set S is (a, B)-winning if Alice has a winning strategy, is a-winning if
it is («, f)-winning for any 5 € (0,1), and is winning if it is a-winning for
some « € (0,1).

It is easy to see that if S is winning, then it must be dense in X. The
following properties are proved in [64]:

Proposition 5.3. Let X be a complete metric space.

(1) For any o € (0,1), a countable intersection of a-winning sets is
Q-winning.

(2) If X is a Riemannian manifold, then a winning subset of X has
Hausdorff dimension equal to dim X.
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The conjecture proposed in [6] is as follows:

Conjecture 5.4. Let G,T" and X be as in Theorem 5.1, and endow X with
the Riemannian metric induced from a right-invariant Riemannian metric
on G. Then there exists o € (0,1) such that the set (5.1) is a-winning* for
every Adg-diagonalizable one-parameter subgroup F of G.

In view of Proposition 5.3, the truth of Conjecture 5.4 will imply that for
any countable family {Fy} of Adg-diagonalizable one-parameter subgroups
of GG, the set

{z € X : all Fyx are bounded}
has Hausdorff dimension equal to dim X. Some partial results on Conjecture
5.4 are as follows:

Theorem 5.5. The following statements hold.

(1) ([19]) Conjgecture 5.4 holds if G is semisimple of R-rank 1.
(2) ([6]) Conjgecture 5.4 holds if G = SL3(R) and I" = SL3(Z).
(3) ([4]) Conjecture 5.4 holds if G is the product of finitely many copies

(4) ([15, 7)) If G = SLn(R), T = SL,(Z), and

F = {diag(e!/?I,,e""/1,) : t € R}, pt+qg=mn,

then the set (5.1) is winning.
(5) ([30]) If G = SLy(R), T = SL,(Z), and

F = {diag(e"'I,_2, e e7") : t € R}, r>s>0, (n—2)r+s=1,
then the set (5.1) is winning.

The motivation for Conjecture 5.4 is the Schmidt conjecture in Diophan-
tine approximation. Let d > 1, and denote

Wd:{(rl""’rd)eRd:riZOarl‘F"'—l-’l“d:l}.

For r = (ry,...,rq) € Wy, consider the set
_ d. T .
Bad(r) = {(a1,...,aq) € R®: ;rellg max g (ga;) > 0}.

Vectors in Bad(r) are said to be badly approzimable with weight r. The
set Bad(r) is a fundamental object of study in Diophantine approximation.
When d = 1, it reduces to the set of badly approximable numbers. Schmidt
[64, 65] proved that Bad(%,...,%l) is a winning set, and proposed the
following conjecture in [66]:

Conjecture 5.6 (Schmidt conjecture). For d = 2, we have

1 2 2 1

4The conjecture in [6] is in fact stronger: it states that the set (5.1) is hyperplane
absolute winning (HAW). The notion of a HAW set is introduced in [14, 38] and has
better properties. Here we only discuss winning sets in the sense of Definition 5.2 for
simplicity.
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The Schmidt conjecture was proved by Badziahin, Pollington and Velani
[9]. They also proved that for any countable subset R C W, satisfying a
certain technical condition (which holds automatically if R is finite), the
intersection (), Bad(r) has Hausdorff dimension 2. Subsequently, this
technical condition was removed in [1], and then the following result was
proved in [2]:

Theorem 5.7. There exists o € (0,1) such that Bad(r) is a-winning for
any r € Ws.

In view of Proposition 5.3, this gives another proof of the Schmidt
conjecture. See also [3, 10, 55] for further results. In dimension d > 3,
Beresnevich [13] proved that (.. Bad(r) has Hausdorff dimension d for
any countable subset R C W, satisfying a technical condition similar to
that in [9], and the condition was then removed by Yang [71]. Moreover, it
is proved in [31] that Bad(r) is winning if the weight r = (ry, ..., r4) satisfies
ry = -+ =rq1 > rq For a general weight r € Wy, whether Bad(r) is a
winning set remains a challenging open problem.

Let us now explain the relation between badly approximable vectors and
bounded orbits. Take n = d+1. For a weight r = (rq,...,7ry) € Wy, consider
the one-parameter subsemigroup

Ff = {diag(c™,..., " ) 1 > 0}

of SL,,(R). For a row vector a € RY, let

o Id aT
xa_<0 1)SLn(Z)eXn.

Similar to Proposition 4.8, the following result was proved by Dani [18] and
Kleinbock [33] using Mahler’s compactness criterion.

Proposition 5.8 (Dani-Kleinbock correspondence). The orbit Fz, is
bounded if and only if a € Bad(r).

Consider the 2-dimensional torus T? = {z, : a € R?} embedded in
Xj3. In view of the Dani-Kleinbock correspondence, the Schmidt conjecture
is equivalent to the statement that there exists € T? such that the

orbits Ff] 1 2)x and F, 2 1)x are both bounded. Similarly, Theorem 5.7 can
'3

be restated as the followmg dynamical statement: For any one-parameter
subsemigroup F'* of the semigroup A" given in (4.1), the set

{z € T®: F™x is bounded}

is a winning subset of T2?. Therefore, Conjecture 5.4 can be viewed as
a dynamical Schmidt conjecture. Finally, we point out that a similar
conjecture for the so-called expanding horospherical subgroups is also
formulated in [6]. To avoid technicalities, we invite the reader to consult
[6] directly.
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