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1 Introduction

The contact process on a connected graph S = (V,E) is a continuous-time Markov process ξt

whose state space is the collection of subsets of V , and with the transition rates ξt → ξt \ {x} for x ∈ ξt at rate 1,

ξt → ξt ∪ {x} for x /∈ ξt at rate λ · |{y ∈ ξt : x ∼ y}|,

where |·| denotes the cardinality of a set and x ∼ y denotes that there is an edge between vertices
x and y. We usually think of ξt as the set of sites which are occupied by infected(or active)
particles at time t. Particles die(or become healthy) at rate 1 and are born at a rate equal to
the number of neighbors alive multiplied by some fixed parameter λ, with the restriction that
no more than one particle may occupy a given site. We shall use ξA

t to denote the contact
process with starting set A and use ξx

t as an abbreviation for ξ
{x}
t , where x ∈ V . Often x will

be some distinguished vertex O.
The behavior of the contact process depends crucially on the choice of parameter λ. If

P(∀t, ξO
t 6= ∅) > 0,

we say that the process survives; otherwise we say that it dies out. If

P(∀T, ∃t > T with O ∈ ξO
t ) > 0,

we say that it survives strongly. If the process survives without surviving strongly, we say that
it survives weakly. Note that neither of these properties depends on the choice of O, since S

is connected. By the monotonicity of the contact process(see Liggett[1]), we can define two
critical values for λ as follows: λ1 := inf{λ : ξO

t survives},

λ2 := inf{λ : ξO
t survives strongly}.
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When we wish to emphasize the graph S, we shall denote these by λ1(S) and λ2(S). It is well
known that on an infinite connected graph of bounded degrees, one has 0 < λ1 ≤ λ2 < ∞.

The purpose of this paper is to study the contact process on Td ×G, where Td is a homo-
geneous tree with degree d ≥ 3, and G is an arbitrary finite connected simple graph. Here and
henceforth we call G a simple graph if it contains no loops and no multiple edges. The main
result is as follows.

Theorem 1.1 The contact process on Td × G(d ≥ 3) has an intermediate phase in the sense
that

λ1 < λ2.

Furthermore, we can extend the result in some content. Let H be an isotropic block tree with
exponential growth(see Page 1719 of Stacey[2] for the definitions), and let G be an arbitrary
finite connected simple graph as above.

Theorem 1.2 The contact process on H ×G has an intermediate phase in the sense that

λ1 < λ2.

The main task of this paper is to prove Theorem 1.1. The idea is enlightened by Stacey[2],
who proved the existence of an intermediate phase for the contact process on homogeneous trees
and isotropic trees with exponential growth. But the inhomogeneity of G and the existence of
cycles both make the proof more difficult. Some new tricks are used in order to deal with the
difficulties, especially in Sections 2 and 3 of this paper. We omit the formal proof of Theorem
1.2, since it is similar to the proof of Theorem 1.1. In detail, one can use the trick in Section 2
of Stacey[2] to deal with the inhomogeneity of the isotropic tree and use the trick in this paper
to deal with the inhomogeneity of the finite connected graph as well as the existence of cycles
in the product graph.

In history, the contact process was first introduced by Harris[3] and has been greatly studied
since then. Liggett[1] contains a summary of some important results, as well as numerous
references to books and survey papers where further information can be found. An earlier
important reference is Liggett[4], which explains why the transition rates given above define a
unique process and so forth. The contact process was initially studied on d-dimensional lattices
and homogeneous trees. The existence of an intermediate phase is one of the main topics. It
has been shown that λ1(Zd) = λ2(Zd), while λ1(Td) < λ2(Td) for d ≥ 3. For Zd this follows
from results of Bezuidenhout and Grimmett[5]. The result for Td was proved by Pemantle[6]
for d ≥ 4 and Liggett[7] for d = 3; a simpler proof was given by Stacey[2]. The existence of a
phase of weak survival, which does not occur on Zd, is the principal reason for the interest to
study the process on trees.

Next, the contact process has been studied on more general graphs. One reasonable class to
consider are the quasi-transitive graphs. A graph is said to be transitive if the automorphism
group acts transitively on the set of vertices(that is, has only one orbit). It is said to be
quasi-transitive if the action of the automorphism group has only finitely many orbits.
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Given an infinite connected graph S, define its Cheeger’s constant by

ι(S) := inf
{
|∂H|
|H|

: H ⊂ S, H is connected, 1 ≤ |H| < ∞
}

,

where ∂H := {x ∈ V (S) \ V (H) : ∃y ∈ V (H), s.t. x ∼ y} is the boundary of H. If ι(S) = 0,
we say that S is amenable; otherwise we say that it’s non-amenable. Obviously, the lattice
Zd is amenable for d ≥ 1, while the homogeneous tree Td is non-amenable for d ≥ 3. Note
that the product graphs Td × G in Theorem 1.1 and H × G in Theorem 1.2 are both infinite
quasi-transitive non-amenable simple graphs.

Furthermore, we call a graph S locally finite if deg(v) < ∞ for every vertex v ∈ V (S), where
deg(v) denotes the degree of a vertex v ∈ V (S).

Pemantle and Stacey[8] conjectured that for the contact process on an infinite locally finite
connected quasi-transitive(and hence bounded degrees) graph S, λ1(S) < λ2(S) if and only if
S is non-amenable(see Conjecture 5.1 in Pemantle and Stacey[8]). The results of Theorems 1.1
and 1.2 in this paper partially confirm this conjecture and extend the results of Stacey[2] in
some content. In fact, when G is a singleton, then Theorems 1.1 and 1.2 in this paper reduce
to Theorems 1.3 and 2.0 in Stacey[2] respectively.

The rest of the paper is organized as follows. In Section 2 we will use the subadditive limiting
theorem to prove the property of exponential growth and decay for the expected number of
infected sites. In Section 3 we will study the process at the first critical value λ1, showing that
it dies out. Finally, we will prove Theorem 1.1 in Section 4.

2 Exponential Growth and Decay

Henceforth, we will denote a vertex in Td ×G by (x, y), where x ∈ V (Td) is the Td-component
and y ∈ V (G) is the G-component. Choose a fixed vertex O ∈ V (Td) as the root of Td. And
denote the vertex set of G by V (G) = {z1, z2, · · · , zm}.

Next, we shall prove the property of exponential growth and decay for the expected number
of infected sites. The idea comes from Madras and Schinazi[9]. Some new tricks are needed to
deal with the inhomogeneity and the existence of cycles.

Proposition 2.1 There exist constants c ∈ R and C1, C2 > 0 depending on λ, d and m such
that, for any t > 1, 1 ≤ k ≤ m,

C1e
ct ≤ E(|ξ(O,zk)

t |) ≤ C2e
ct.

Furthermore, c is a continuous function of λ.

Proof Without loss of generality, we only prove the case of k = 1, the proof of the other cases
are the same. Let Ft := σ

(
ξ
(O,z1)
u : u ≤ t

)
.

On one hand, for any s, t > 0, let fs(A) := E(|ξA
s |). So if A is a random set, then fs(A) is

a random variable. By additivity of the process(see Liggett[1]) and the Markov property,

E(|ξ(O,z1)
t+s+1| | Ft+1) = fs(ξ

(O,z1)
t+1 ) ≤

∑
(x,y)∈ξ

(O,z1)
t+1

E(|ξ(x,y)
s |). (2.1)
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Define

α := min
1≤k≤m

P(ξ(O,z1)
1 = {(O, zk)}) > 0.

Then by the Markov property, for all (x, y) ∈ V (Td ×G),

E(|ξ(O,z1)
s+1 |) ≥ α ·E(|ξ(O,y)

s |) = α ·E(|ξ(x,y)
s |).

Together with (2.1), we get

E(|ξ(O,z1)
t+s+1| | Ft+1) ≤

∑
(x,y)∈ξ

(O,z1)
t+1

1
α
·E(|ξ(O,z1)

s+1 |) =
1
α
· |ξ(O,z1)

t+1 | ·E(|ξ(O,z1)
s+1 |).

Taking expectation in both sides, we get that for any s, t > 0,

E(|ξ(O,z1)
t+s+1|) ≤

1
α
·E(|ξ(O,z1)

t+1 |) ·E(|ξ(O,z1)
s+1 |).

Let mt :=
1
α
· E(|ξ(O,z1)

t+1 |), then mt+s ≤ mt ·ms. By the standard subadditive argument(see,
for instance, Durrett[10], Page 360-361),

c := lim
t→∞

1
t

log mt = inf
t>0

1
t

log
[

1
α
·E(|ξ(O,z1)

t+1 |)
]

= lim
t→∞

1
t

log[E(|ξ(O,z1)
t+1 |)] (2.2)

exists. So

E(|ξ(O,z1)
t |) ≥ α · ec(t−1)

for any t > 1. Let

C1 :=
α

ec
> 0,

then C1 depends only on λ, d and m. And

E(|ξ(O,z1)
t |) ≥ C1e

ct

for any t > 0. Furthermore,
1
t

log mt is continuous in λ for any t > 0. So c = inf
t>0

1
t

log mt is

upper-semicontinuous in λ.
On the other hand, given S ⊂ V (Td ×G), define π(S) the projection of S on Td by

π(S) := {v ∈ V (Td) : ∃j ∈ V (G) s.t. (v, j) ∈ S}.

For any (x, y) ∈ V (Td × G) where x ∈ V (Td) and y ∈ V (G), if we remove all vertices whose
Td-component is x as well as the edges adjacent to them, we are left with d disjoint components.
We call each of these components a branch adjacent to (x, y). Using an inductive approach, it
is not difficult to see that if the projection of the infected set(denoted by A) on Td has exactly
k elements, then there are more than k(d− 2) uninfected disjoint branches that are adjacent to

some infected sites. So there must be more that
k(d− 2)

d
different infected sites having at least

one uninfected adjacent branch. Classify them according to their G-components and denote
the number of them whose G-component is zi by ni(A)(1 ≤ i ≤ m) respectively. Note that if
A is a random set, then ni(A)(1 ≤ i ≤ m) are random variables. We keep at time t − 1 only
the particles which have at least one uninfected branch. For each of these particles we consider
only its offspring located at the same site or on the adjacent branch. By additivity and the
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Markov property we get

E(|ξ(O,z1)
t+s−1|) ≥

m∑
i=1

E(ni(ξ
(O,z1)
t−1 )) · b(i)

s , (2.3)

where b
(i)
s is the expected number of particles of ξ

(O,zi)
s which are located at (O, zi) or on a

given branch adjacent to it. Define

β := min
1≤i≤m

P(ξ(O,zi)
1 = {(O, z1)}) > 0.

Then by symmetry and the Markov property,

b(i)
s ≥ 1

d
·E(|ξ(O,zi)

s |) ≥ β

d
·E(|ξ(O,z1)

s−1 |) (2.4)

for any 1 ≤ i ≤ m. Furthermore, since G is a finite graph which has only m vertices, |ξ(O,z1)
t−1 | ≤

m · |π(ξ(O,z1)
t−1 )| for any ω ∈ Ω. Therefore,

E(|π(ξ(O,z1)
t−1 )|) ≥ 1

m
·E(|ξ(O,z1)

t−1 |). (2.5)

(2.3), (2.4) and (2.5) together imply

E(|ξ(O,z1)
t+s−1|) ≥

β

d
·E(|ξ(O,z1)

s−1 |) ·E

(
m∑

i=1

ni(ξ
(O,z1)
t−1 )

)

≥ β

d
·E(|ξ(O,z1)

s−1 |) · d− 2
d

·E(|π(ξ(O,z1)
t−1 )|)

≥ β(d− 2)
md2

·E(|ξ(O,z1)
t−1 |) ·E(|ξ(O,z1)

s−1 |)

for any t, s > 1. Let m̃t :=
β(d− 2)

md2
· E(|ξ(O,z1)

t−1 |) for t > 1. Then m̃t+s ≥ m̃t · m̃s for any
t, s > 1. By the standard subadditive argument again,

c̃ := lim
t→∞

(
−1

t
log m̃t

)
= inf

t>1

[
−1

t
log
(

β(d− 2)
md2

·E(|ξ(O,z1)
t−1 |)

)]
exists and equals to − lim

t→∞

1
t

log[E(|ξ(O,z1)
t−1 |)] = −c, where c is as defined in (2.2). So

E(|ξ(O,z1)
t |) ≤ md2

β(d− 2)
· ec(t+1)

for any t > 0. Let

C2 :=
md2

β(d− 2)
· ec > 0,

then C2 depends only on λ, d and m, and

E(|ξ(O,z1)
t |) ≤ C2e

ct

for any t > 0. Furthermore,
1
t

log m̃t is continuous in λ for any t > 1. So c = sup
t>1

1
t

log m̃t is

lower-semicontinuous in λ.
So we have C1e

ct ≤ E(|ξ(O,z1)
t |) ≤ C2e

ct for all t > 1, and c is a continuous function of λ,
as desired. �
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3 The Process at the First Critical Value

The main purpose of this section is to prove the following proposition which is very important
to the proof of Theorem 1.1, and use it to explain that the process at the first critical value λ1

dies out.

Proposition 3.1 c = c(λ) is as defined in (2.2), then c(λ1) = 0 and when λ = λ1,

C1 ≤ E(|ξ(O,zk)
t |) ≤ C2

for any t > 1 and 1 ≤ k ≤ m, where C1 and C2 are two positive constants depending only on d

and m.

Again, without loss of generality, we suppose k = 1, the proof of the other cases are the
same. The idea of the proof of Proposition 3.1 is enlightened by Morrow, Schinazi and Zhang[11].
Extra tricks are used in order to deal with the inhomogeneity and the existence of cycles here.
Some lemmas are needed before the proof.

We begin by recalling the graphical construction of the contact process. Readers can consult
Liggett[1] for more details. We associate each site x ∈ V (Td×G)(for simplicity we do not use the
componential form here) with deg(x)+1 independent Poisson processes, one with rate 1 and the
deg(x) others with rate λ, where deg(x) denotes the degree of x. Make these Poisson processes
independent from site to site. For each x ∈ V (Td×G), let {T x,k

n : n ≥ 1}, k = 0, 1, 2, · · · ,deg(x)
be the arrival times of these deg(x)+1 processes respectively. The process {T x,0

n } has rate 1, the
others have rate λ. For each x ∈ V (Td×G) and n ≥ 1 we write a δ mark at the point (x, T x,0

n )
while we draw arrows from (x, T x,k

n ) to (xk, T x,k
n ) if k ≥ 1, where {xk : k = 1, 2, · · · ,deg(x)}

are the neighbors of x. We say that there is a path from (x, s) to (y, t) if there is a sequence
of times s0 = s < s1 < · · · < sm+1 = t and spatial locations x0 = x, x1, · · · , xm = y so that
for i = 1, 2, · · · ,m, there is an arrow from xi−1 to xi at time si and the vertical segments
{xi} × (si, si+1) do not contain any δ. Use the notation {(x, s) → (y, t)} to denote the event
that there is a path from (x, s) to (y, t). To construct the contact process from the initial
configuration A where there is one particle at each site of A, we let ξA

t (y) = 1 if there is a path
from (x, 0) to (y, t) for some x in A, which is also denoted by {(A, 0) → (y, t)}.

Next, we will give some notation. We still use the componential form to denote a site
henceforth. Consider the homogeneous tree Td, denote by BT the connected component of the
subgraph obtained by removing a distinguished subset of d− 1 edges, each having an endpoint
at the root O. Then denote B := BT × G. We construct the severed contact process in B
by considering only the paths(in the graphical construction) in B. Denote by {((x1, y1), s)

B−→
((x2, y2), t)} the event that there is a path from ((x1, y1), s) to ((x2, y2), t) inside B. Denote by

{(A, s) B−→ ((x2, y2), t)} :=
⋃

(x1,y1)∈A

{((x1, y1), s)
B−→ ((x2, y2), t)},

where A ⊂ V (Td × G). Then denote by η
(x,y)
t the severed contact process in B, starting with

one particle at the site (x, y) ∈ V (B).
Using the graphical construction described above, we can construct the two processes ξ

(O,zi)
t

and η
(O,zi)
t simultaneously for any 1 ≤ i ≤ m, but for the severed contact process we only use
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the arrows that are located in B. For i = 1, 2, · · · ,m, define {ρ(i)
t , t ≥ 0} to be the projection

process of η
(O,zi)
t on BT. That is to say, for any x ∈ V (BT), ρ

(i)
t (x) = 1 if and only if there

exists y ∈ V (G) such that η
(O,zi)
t (x, y) = 1.

Lemma 3.1 If c(λ) > 0, then for any constant K > 0, there exists T = T (K, λ) > 1 such that

E(|ρ(i)
T |) ≥ K (3.1)

for any i = 1, 2, · · · ,m.

Proof Take (x, y) ∈ V (B) where x 6= O. Let O
′

be the neighbor of O in BT. For each
k = 1, 2, · · · ,m, denote the kth Poisson process to be the Poisson process from (O, zk) to
(O

′
, zk) with parameter λ. By monotonicity of the contact process(see Liggett[1]) and the

Markov property,

P(ξ(O,z1)
t (x, y) = 1)

≤
∫ t

0

P

[
m⋃

k=1

({the kth Poisson process has a jump in ds} ∩ {((O
′
, zk), s) B−→ ((x, y), t)})

]

≤
∫ t

0

P

[(
m⋃

k=1

{the kth Poisson process has a jump in ds}

)
∩ {(O

′
×G, s) B−→ ((x, y, t)}

]

=
∫ t

0

P

(
m⋃

k=1

{the kth Poisson process has a jump in ds}

)
·P[(O

′
×G, s) B−→ ((x, y), t)]

≤
∫ t

0

mλds ·P[(O
′
×G, s) B−→ ((x, y), t)]

= mλ ·
∫ t

0

P[(O
′
×G, s) B−→ ((x, y), t)]ds.

We use O
′×G as an abbreviation for {O′}×G now and henceforth. Sum over all (x, y) ∈ V (B)

where x 6= O to get∑
(x,y)∈V (B), x 6=O

P(ξ(O,z1)
t (x, y) = 1) ≤ mλ ·

∫ t

0

∑
(x,y)∈V (B), x6=O

P[(O
′
×G, s) B−→ ((x, y), t)]ds.

So we have∑
(x,y)∈V (B)

P(ξ(O,z1)
t (x, y) = 1) ≤ mλ ·

∫ t

0

∑
(x,y)∈V (B)

P[(O
′
×G, s) B−→ ((x, y), t)]ds + m. (3.2)

By symmetry and Proposition 2.1,∑
(x,y)∈V (B)

P(ξ(O,z1)
t (x, y) = 1) = E(|ξ(O,z1)

t ∩ B|) ≥ 1
d
·E(|ξ(O,z1)

t |) ≥ C1

d
· ec(λ)t.

Also note that ∑
(x,y)∈V (B)

P[(O
′
×G, s) B−→ ((x, y), t)] = E(|ηO

′
×G

t−s |).

So by (3.2),

1
mλ

[
C1

d
ec(λ)t −m

]
≤
∫ t

0

E(|ηO
′
×G

t−s |)ds =
∫ t

0

E(|ηO
′
×G

s |)ds ≤ t · sup
s≤t

E(|ηO
′
×G

s |).
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In other words,

sup
s≤t

E(|ηO
′
×G

s |) ≥ 1
mλt

[
C1

d
· ec(λ)t −m

]
. (3.3)

The right-hand side of (3.3) tends to infinity as t → ∞ since c(λ) > 0. So for any constant
K > 0, we can find a time T > 1 depending on K and λ such that

E(|ηO
′
×G

T−1 |) ≥ m

γ
·K,

where γ := min
1≤i≤m

P(η(O,zi)
1 = O

′ ×G) > 0. Then by the Markov property,

E(|η(O,zi)
T | ≥ γ ·E(|ηO

′
×G

T−1 |) ≥ mK (∀1 ≤ i ≤ m). (3.4)

Note that for all ω ∈ Ω, |η(O,zi)
t | ≤ m · |ρ(i)

t | for all t > 0. So by (3.4),

E(|ρ(i)
T |) ≥ 1

m
·E(|η(O,zi)

T |) ≥ K

for any 1 ≤ i ≤ m, as desired. �

Next we will show that (3.1) is enough to prove that the severed contact process survives
with positive probability. The idea is to construct the multi-type branching processes which lie
below the contact process. The new processes are easier to analyze than the contact process
itself.

By the argument in the proof of Proposition 2.1, for any finite subset S ⊂ V (Td×G), there

are at least
d− 2

d
|π(S)| − 1 branches which satisfy the following four properties:

(a) are adjacent to some point in S,
(b) have no point in S,
(c) are contained in B, and
(d) are disjoint from each other.
For simplicity we denote B(S) the set of vertices in S which emanate the branches described

above(satisfying properties (a) to (d)). So |B(S)| ≥ d− 2
d

|π(S)| − 1. Fix T > 1 which will be

specified later. Using the graphical construction, for any 1 ≤ i ≤ m we define a new process η̃
(i)
t

as follows. η̃
(i)
t evolves like η

(O,zi)
t up to time T . At time T we make all the particles of η̃

(i)
T which

are not in B(η̃(i)
T ) become healthy, and restrict the spatial evolution of the remaining particles

in the following way. Each particle in B(η̃(i)
T ) generates a process for which births are allowed

only on the empty branches described above(satisfying (a) to (d)). At time T , we create at least
d− 2

d
|π(η̃(i)

T )| − 1 severed contact processes which are independent of one another. Repeat the

preceding step at all times kT and only keep the particles in B(η̃(i)
kT ). Between times kT and

(k + 1)T , the process evolves according to the graphical construction. If we define the discrete-
time process Z

(i)
k := |η̃(i)

kT | (k ≥ 1, 1 ≤ i ≤ m) and Z
(i)
0 := 1 (1 ≤ i ≤ m), then {Z(i)

k , k ≥ 0}
is a multi-type branching process. It can be described as follows. There are m ≥ 1 different
types of individuals. Each type has its offspring scheme which decides the distribution of its
offsprings’ number and types. At generation 0 there is only one individual of type i(1 ≤ i ≤ m).
Then it gives birth to some offsprings according to the offspring scheme of type i and repeat
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it generation by generation. The process evolves in the way that the individuals of the same
type have the same offspring distribution, and all different individuals give birth to offsprings
independently. Z

(i)
k denotes the total number of individuals in generation k. Note that when

m = 1, {Z(i)
k } is just the ordinary Galton-Watson branching process.

Furthermore, for any 1 ≤ i ≤ m,

µi := E(Z(i)
1 ) = E(|η̃(i)

T |) ≥ d− 2
d

·E(|ρ(i)
T |)− 1. (3.5)

The next lemma gives a sufficient condition for the survival of the multi-type branching
process.

Lemma 3.2 If µi > 1 for every 1 ≤ i ≤ m, where µi is as defined in (3.5), then

P(Z(i)
k ≥ 1, ∀k ≥ 0) > 0

for any 1 ≤ i ≤ m.

Remark 3.1 One can use Theorem 2 on Page 186 of Athreya and Ney[12] to prove Lemma 3.2
after checking the conditions of that theorem. However, in order to avoid the tedious checking
procedure which based on matrix theory, we present a direct proof here, which probably seems
simpler.

Proof of Lemma 3.2 For 1 ≤ i ≤ m, let p
(i)
l1,··· ,lm be the probability that the individual of type

i has lj offsprings of type j (1 ≤ j ≤ m). For i = 1, 2, · · · ,m, define

Φi(t) :=
∑

l1≥0, ··· , lm≥0

p
(i)
l1, ··· , lm

· tl1+···+lm

for 0 ≤ t ≤ 1. Then for any 1 ≤ i ≤ m,

Φi(0) ≥ 0, Φi(1) = 1.

Furthermore, using differentiation one can get that Φi is continuous, strictly increasing and
convex on the interval [0, 1]. Then define

Φ(t) := max
1≤i≤m

Φi(t)

for 0 ≤ t ≤ 1. It is easy to see that Φ is continuous and strictly increasing on [0, 1] with

Φ(0) ≥ 0, Φ(1) = 1.

Since Φ
′

i(1) = µi > 1 for any 1 ≤ i ≤ m, there exists δi > 0 such that Φi(t) < t for any
t ∈ [1− δi, 1). Take

δ := min
1≤i≤m

δi > 0,

then Φ(t) < t for any t ∈ [1 − δ, 1). Together with the fact that Φ(0) ≥ 0, we get that there
exists ρ ∈ [0, 1− δ) such that Φ(ρ) = ρ. For 1 ≤ i ≤ m, k ≥ 0, define

τ
(i)
k := P(Z(i)

k = 0),

then
τ

(i)
k ↗ τ (i)

∞ = P(∃k, Z
(i)
k = 0)
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as k →∞. Furthermore, define
τk := max

1≤i≤m
τ

(i)
k

for 1 ≤ k ≤ ∞. Then τk ↗ τ∞ as k tends to infinity. Note that for any 1 ≤ i ≤ m,

τ
(i)
k+1 =

∑
l1≥0, ··· , lm≥0

p
(i)
l1, ··· , lm

· (τ (1)
k )l1 · · · · · (τ (m)

k )lm ≤ Φi(τk) ≤ Φ(τk).

Then
τk+1 = max

1≤i≤m
τ

(i)
k+1 ≤ Φ(τk)

for any k ≥ 0. Since τ0 = 0 ≤ ρ, then

τ1 ≤ Φ(τ0) ≤ Φ(ρ) = ρ.

Using induction to get τk ≤ ρ for all k, so

τ∞ = lim
k→∞

τk ≤ ρ < 1.

Furthermore,
P(∃k, Z

(i)
k = 0) = τ (i)

∞ < 1

for any 1 ≤ i ≤ m. In other words,

P(∀k, Z
(i)
k > 0) > 0

for any 1 ≤ i ≤ m, as desired. �

The next lemma we will need is a well-known fact about Markov chains with absorbing
states. Readers can see (2.5) on Page 46 of Liggett[1] for the proof in the Zd case. The proof
of it in our case is almost the same and is therefore omitted here. Define

Ω∞ := {|ξ(O,z1)
t | ≥ 1, ∀t > 0}. (3.6)

Lemma 3.3 lim
t→∞

|ξ(O,z1)
t | = ∞ a.s. on Ω∞.

Proof of Proposition 3.1 On one hand, when λ > λ1, the process ξ
(O,z1)
t survives. So P(Ω∞) >

0, where Ω∞ is as defined in (3.6). By Lemma 3.3, lim
t→∞

|ξ(O,z1)
t | = ∞ almost surely on Ω∞. So,

by Fatou’s lemma,
lim inf
t→∞

E(|ξ(O,z1)
t |) ≥ E(lim inf

t→∞
|ξ(O,z1)

t |) = +∞.

Then c(λ) ≥ 0. Otherwise, by Proposition 2.1, E(|ξ(O,z1)
t |) ≤ C2e

c(λ)t → 0 as t → ∞, a
contradiction. By the continuity of c(λ) in λ, we get c(λ1) ≥ 0.

On the other hand, fix λ such that c(λ) > 0 and take constant K >
2d

d− 2
. Then by Lemma

3.1, there exists T = T (K, λ) > 1 such that

E(|ρ(i)
T |) ≥ K >

2d

d− 2
.

Together with (3.5) to get

µi ≥
d− 2

d
·E(|ρ(i)

T |)− 1 > 1
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for any 1 ≤ i ≤ m. Then by Lemma 3.2, {Z(1)
k } survives with positive probability, so does

η
(O,z1)
t and therefore ξ

(O,z1)
t . Then

P(|ξ(O,z1)
t | > 0, ∀t ≥ 0) > 0.

Therefore, λ ≥ λ1.
We have shown that if c(λ) > 0 then λ ≥ λ1. In other words, if λ < λ1 then c(λ) ≤ 0. By

the continuity of c(λ) in λ, we get c(λ1) ≤ 0. So c(λ1) = 0. Furthermore, by Proposition 2.1,
when λ = λ1,

C1 ≤ E(|ξ(O,z1)
t |) ≤ C2

for any t > 1, where C1 and C2 are two positive constants depending only on d and m, as
desired. �

Corollary 3.1 If λ = λ1, then ξO×G
t dies out.

We use O × G as an abbreviation for {O} × G now and henceforth. The proof of this
corollary is omitted since the fact that the survival property does not depend on the initial
state if it is finite, and the proof of the singleton case is quite similar to the first paragraph in
the proof of Proposition 3.1.

4 The Existence of an Intermediate Phase

In this section we will prove our main result, Theorem 1.1. Our approach is similar to the one
used by Stacey[2].

We will give some new definitions first. It will greatly simplify some calculations if the
homogeneous tree Td is arranged so that every vertex has one neighbor above it and d − 1
neighbors below it. We can then assign a level to each vertex in such a way that the root O

has level 0 and any vertex in level l has one neighbor in level l− 1 and d− 1 neighbors in level
l + 1. For n ∈ Z, we shall use Ln to denote the set of all vertices in level n. Of course, each set
Ln is infinite. Use l(x) to denote the level of a vertex x ∈ V (Td).

Having arranged the vertices in levels, we now define the weight of a vertex (x, y) ∈ V (Td×
G) by

wα(x, y) := αl(x), (4.1)

where α > 0 is to be specified later; we shall often use w(x, y) as the abbreviation for wα(x, y).
The weight of a set of vertices is defined to be the sum of the weights of all vertices in the set.
This arrangement of the tree and assignment of weights appears in Liggett[7].

Having made these definitions, it is easy to establish the following result, whose proof is a
slight extension of the proof of Proposition 1.0 in Stacey[2] and is therefore omitted here.

Proposition 4.1 Let {ξO×G
t } be the contact process on Td ×G with parameter λ and starting

set O×G, where Td (d ≥ 3) is a homogeneous tree and G is a finite connected graph. Suppose
that for some t0 > 0 and some weight function wα,

E(wα(ξO×G
t0 )) = β < 1.
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Then
P(ω ∈ Ω : ∃T = T (ω), s.t. ∀t ≥ T, (O ×G) ∩ ξO×G

t = ∅) = 1,

so a fortiori, λ ≤ λ2.

We shall also need one technical result about the behavior of the weight function.

Lemma 4.1 Let {ξO×G, λ
t : t ≥ 0} be the contact process on Td × G with parameter λ and

starting set O ×G, where Td (d ≥ 3) is a homogeneous tree and G is a finite connected graph.
Let w = wα be a weight function as above and let T be some fixed time. Then the function

λ → E(w(ξO×G, λ
T ))

is continuous.

The result of this lemma is rather obvious since the function E(w(ξO×G, λ
T )) depends only

on the process for finite time periods. One can refer to Liggett[1] Page 39-40 for details.

Proof of Theorem 1.1 Let ξO×G
t be the contact process at the first critical value λ1 with

starting set O ×G. Let w(·) be the weight function as defined by (4.1) with α =
1√

d− 1
. Let

Dn,k := {(x, y) ∈ V (Td ×G) : |x−O|T = n, y = zk}

for n ≥ 0, k = 1, 2, · · · ,m, where | · |T denotes the graphic norm on Td, that is, the shortest
length of paths joining the two points in Td. Then

|Dn,k| = d(d− 1)n.

Furthermore,

E(w(ξO×G
t )) = E

 ∑
(x,y)∈ξO×G

t

w(x, y)

 = E

∑
n≥0

m∑
k=1

∑
(x,y)∈Dn,k

w(x, y) · 1{(x,y)∈ξO×G
t }


=
∑
n≥0

m∑
k=1

∑
(x,y)∈Dn,k

w(x, y) ·P((x, y) ∈ ξO×G
t ).

Let
an,k :=

w(Dn,k)
|Dn,k|

for n ≥ 0, k = 1, 2, · · · ,m. Note that by symmetry, P((x, y) ∈ ξO×G
t ) are the same for any

(x, y) ∈ Dn,k, denote it by pn,k. So

E(w(ξO×G
t )) =

∑
n≥0

m∑
k=1

pn,k · w(Dn,k) =
∑
n≥0

m∑
k=1

an,k · |Dn,k| · pn,k

=
∑
n≥0

m∑
k=1

an,k ·
∑

(x,y)∈Dn,k

P((x, y) ∈ ξO×G
t )

=
∑
n≥0

m∑
k=1

an,k ·E(|ξO×G
t ∩ Dn,k|). (4.2)
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We can calculate the value of each an,k (n ≥ 0, k = 1, 2, · · · ,m) accurately. First classify

the vertices in Dn,k according to their generation number as follows(note that Dn,k ⊂
n⋃

i=−n

Li

for k = 1, 2, · · · ,m). For any k = 1, 2, · · · ,m,

|Dn,k ∩ Ln| = (d− 1)n,

|Dn,k ∩ Ln−2| = (d− 2)(d− 1)n−2,

|Dn,k ∩ Ln−4| = (d− 2)(d− 1)n−3,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

|Dn,k ∩ Ln−(2i−2)| = (d− 2)(d− 1)n−i,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

|Dn,k ∩ L−n+4| = (d− 2)(d− 1)1,

|Dn,k ∩ L−n+2| = (d− 2)(d− 1)0,

|Dn,k ∩ L−n| = (d− 1)0 = 1.

Note that the pattern varies slightly at the start and finish.

So for any n ≥ 0, k = 1, 2, · · · ,m, using our choice of α =
1√

d− 1
to get

w(Dn,k) = α−n + (d− 1)nαn +
n∑

i=2

(d− 2)(d− 1)n−iαn−(2i−2)

= (d− 1)
n
2 + (d− 1)

n
2 +

n∑
i=2

(d− 2)(d− 1)
n−2

2

= 2(d− 1)
n
2 + (n− 1)(d− 2)(d− 1)

n−2
2 .

Recall that |Dn,k| = d(d− 1)n−1. So

an,k =
w(Dn,k)
|Dn,k|

=
2(d− 1) + (n− 1)(d− 2)

d(d− 1)
n
2

→ 0

as n → ∞ since d ≥ 3. Therefore, we can take N large enough, such that when n ≥ N ,
an,k ≤

ε

mC2
for any k = 1, 2, · · · ,m, where C2 is the positive constant depending only on d

and m which appears in Proposition 3.1. Then we split up the right-hand side of (4.2) as∑
0≤n<N

m∑
k=1

∑
(x,y)∈Dn,k

w(x, y) ·P((x, y) ∈ ξO×G
t ) +

∑
n≥N

m∑
k=1

an,k ·E(|ξO×G
t ∩ Dn,k|). (4.3)

The second term in (4.3) is easy to bound. By Proposition 3.1,∑
n≥N

m∑
k=1

an,k ·E(|ξO×G
t ∩ Dn,k|) ≤

ε

mC2
·
∑
n≥N

m∑
k=1

E(|ξO×G
t ∩ Dn,k|)

≤ ε

mC2
·E(|ξO×G

t |) ≤ ε

mC2
·

m∑
k=1

E(|ξ(O,zk)
t |) ≤ ε
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for any t > 1. Next we shall bound the first term of (4.3). By Corollary 3.1, the contact process

with parameter λ = λ1 dies out. So for any (x, y) ∈
⋃

0≤n<N

m⋃
k=1

Dn,k, P((x, y) ∈ ξO×G
t ) → 0 as

t →∞. Since
⋃

0≤n<N

m⋃
k=1

Dn,k has only finitely many vertices, the first term in (4.3) is at most

ε for sufficiently large t. Therefore, for some value t0,

E(w(ξO×G
t0 )) ≤ 2ε.

Then by Lemma 4.1, there exists λ∗ > λ1 such that

E(w(ξO×G, λ∗

t0 )) ≤ 3ε.

Since ε was arbitrary, we can choose it in such a way that 3ε < 1. At this time,

E(w(ξO×G, λ∗

t0 )) < 1.

By Proposition 4.1, λ∗ ≤ λ2. So we get λ1 < λ2, which completes the proof. �
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