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Bernoulli bond percolation. Let G = (V,E) be an infinite graph.

Each edge of G is independently declared open with probability p

and closed with probability 1− p.
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All open bonds, together with all the vertices, consist of a subgraph.

A connected component is called an open cluster.

P (C is infinite) is increasing in p.

Critical value pc = inf{p, P (C is infinite) > 0}.
The critical probability of bond percolation on the square lattice equals 1/2,

H. Kesten, Comm. Math. Phys. 74, (1980) 41-59..
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Suppose that p > pc and that C is infinite.

What properties are shared by G and C?
Benjamini, Lyons and Schramm (1999) initiated a systematic study of the properties of a transitive

graph G that are preserved under random perturbations.

Run simple random walks to explore similarities between G and C.

The (simple) random walk on a graph is a Markov chain, taking val-

ues on the vertices of the graph, with equal transition probabilities

among adjacent vertices.
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Outline:

1. Transience and Recurrence

2. Collisions of two independent walks

3. Speed

4. Anchored Expansion Constant
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Part I: Transience and Recurrence
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The simple random walk on the infinite cluster of Z3
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The simple random walk on the infinite cluster of Z3

is transient for sufficiently large p.
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The simple random walk on the infinite cluster of Z3

is transient for any p > pc.

G. Grimmett, H. Kesten, and Y. Zhang, PTRF, Vol 96 (1993), 33–44.
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We say graph G is recurrent (transient) if the simple random walk on

G is recurrent (transient).

The infinite cluster of Z3 is transient.

Question: G is transient =⇒ C is transient?
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Example: Wedge of Z3 = subgraph induced by the vertices of Z3

{(x, y, z)|x ≥ 0 and |z| ≤ h(x)}.

Conclusion: The wedge is transient if and only if∑
j

1

jh(j)
<∞.

So is the infinite cluster of the wedge for any p > pc.

T. Lyons, Ann. Probab., Vol. 11, (1983) 393-402.

O. Häggerström and E. Mossel, Ann. Probab., 26,(1998), 1212–1231.

O. Angel, I. Benjamini, N. Berger, Y.Peres, E. J. of Probab., Vol.11, (2006).
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Example: The Scherk’s graph

subgraph of Z3, same set of vertices, some edges removed.

(x, y, z) ∼ (x′, y′, z′) if

either x = x′ and |y − y′|+ |z − z′| = 1,

or z = z′ = 0 and |x− x′|+ |y − y′| = 1.

Conclusion: The Scherk’s graph is transient.

So is the infinite cluster when p > 1/2;

However, the infinite cluster is recurrent when pc < p < 1/2.

S. Markvorsen, S. McGuinness & C. Thomassen, Proc. London Math. Soc., Vol. 64, (1992) 1-20.

D. Chen, J. Applied Probab., Vol.38, No.4, (2001), 828-940.
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Proving (i) by constructing a transient subgraph and

(ii) by the Dirichlet Principle. D. Griffeath & T.M. Liggett, Ann. Probab. Vol.10, (1982),

881-895,.

Lemma: Let network H be obtained by modifying the half-line Z+ as

follows. The vertices of H are positive integers. For all n ≥ 1 there is

an edge joining n and n+ 1 with weight 1, and an edge joining n to

2n with weight n−α for some α < 1. Then network H is transient.
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Question: Is there a transitive graph which exhibits the dichotomy

above the critical point pc?
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Part II: Collisions of Two Random Walks
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Question: Will two independent simple random walks on G starting

from the same vertex meet infinitely many times a.s. ?

NO for transient (symmetric) random walks.

NO for some recurrent Markov chains.

The dual process of the voter process is a coalescing random walk.

T.M. Liggett, Trans Amer. Math. Society, Vol. 198, 201-213, (1974).

Krishnapur and Peres, Electronic Comm. in Prob., Vol. 9, 72-81,(2004).
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Monotonicity fails. Z ⊂ Comb⊂ Z2.

A subgraph of recurrent graph is still recurrent.

Could the monotonicity be true in a more restrictive class?
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Wedge Comb G with profile f is the graph with

vertex set V = {(x, y) ∈ Z2, 0 ≤ y ≤ f(x)} and

edge set E = {[(x, n), (x,m)] : |n−m| = 1, n,m ≤ f(x)}

∪{[(x, 0), (y, 0)] : |x− y| = 1}.

Presumably, a phase transition is expected to occur:

G has the infinite collision property if f(x) increases slowly in x;

G has the finite collision property otherwise.
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Theorem. Let G be a wedge comb with profile f(x) = |x|α.

When α ≤ 1, two independent simple random walks on G with

continuous time parameter will meet infinitely often.

When α > 1, two independent simple random walks on G with

continuous time parameter will meet finitely many times.

Martin Barlow, Yuval Peres & Perla Sousi, Collisions of Random Walks, Preprint, 2010.

The case that α < 1/5 was investigated earlier.

D. Chen, B. Wei and Fuxi Zhang, Stat. and Prob. Letters, Vol. 78, 1742-1747, (2008).
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Improvement

f(x) ≤ x log x =⇒ infinitely often a.s.

f(x) ≥ x(log x)2 =⇒ finitely many times a.s.
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Theorem. Let G be a wedge comb with profile f(x). If∑
n

1

f̂(n)
=∞,

where

f̂(n) = 1 ∨max{f(i),−n ≤ i ≤ n},

then two independent simple random walks on G with continuous

time parameter will meet infinitely often.

Remark: f(x) is not required to be increasing in x.

Xinxing Chen & D. Chen, Electronic J. of Probab., vol.16, 1341–1355, (2011).
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Random Media!

We believe that an open cluster of the Bernoulli bond percolation on

G should resemble the original graph G.

Fact: the simple random walk on the infinite cluster of the Bernoulli bond percolation in Zd is

transient if d ≥ 3 (Grimmett, Kesten & Zhang).
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Theorem A. Consider Z2 and let p > 1/2. There exists Ω0 ⊆ Ω

with Pp(Ω0) = 1. Let ω ∈ Ω0 and x ∈ C∞(ω). If X = (Xt)

and Y = (Yt) are two independent continuous-time simple random

walks starting from x on C∞(ω), then

P(Xt = Yt infinitely often ) = 1.

Namely, there is an infinite sequence {t1, s1, t2, s2, · · · } such that t1 < s1 < t2 < s2 < · · · ,

Xti = Yti and Xsi 6= Ysi for all i ≥ 1.

Martin Barlow, Yuval Peres & Perla Sousi, Collisions of Random Walks, Preprint, 2010.

X. Chen and D. Chen, Science China Mathematics, vol 53, 1971–1978, (2010).
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Another formulation: random conductance. (µe, e ∈ Ed) are i.i.d.

Bernoulli bond percolation if P (µe = 1) = 1− P (µe = 0) = p.

Theorem B. Let d = 2. Suppose that (µe, e ∈ Ed) are i.i.d. and

µe ≥ 1 P-a.s. There exists Ω0 ⊆ Ω with P(Ω0) = 1. Let ω ∈
Ω0 and Pω denote the probability conditional on the environment. If

{Xt} and {Yt} are two independent variable speed random walks

starting from x and y respectively, then

Pω(Xt = Yt for some t ≥ 1) = 1.
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The proof of both theorems is based on the following key lemma.

Lemma: Let ω ∈ Ω0 and x, y ∈ C∞(ω). Let X = (Xt) be

a continuous time simple random walk starting from x on C∞(ω),

Y = (Yt) a continuous time simple random walk starting from x. If

X and Y are independent, then

P(Xt = Yt for some t > 1 ) ≥ δ,

where δ is a strictly positive constant and dependent on p at most.
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This lemma is in turn proved by the second moment method. Define

H :=

∫ T
t0

1{
Xs=Ys∈M

[s1/2]

}ds.
Then

P(Xt = Yt for some t > 1 ) ≥ P(H > 0) ≥
(EH)2

EH2
.

Need to show
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EH =

∫ T
t0

P
(
Xs = Ys ∈M[s1/2]

)
ds ≥

c1c
2
2e
−2c3

32
log T.

EH2 ≤2

∫ T
t0

 ∑
z∈M

[t1/2]

c23t
−2(2 + 4c23c

−1
4 ) log T

 dt
≤2

∫ T
t0

(
c23t
−1(2 + 4c23c

−1
4 ) log T

)
dt

≤(4c23 + 8c43c
−1
4 )(log T )2.

(EH)2

EH2
≥

c21c
4
2e
−4c3

10000(c23 + c43c
−1
4 )

.
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Theorem Let p > pc. There exits Ω1 ⊂ Ω with Pp(Ω1) = 1, and

random variables {Sx, x ∈ Zd}, such that Sx(ω) < ∞ for each

ω ∈ Ω1, x ∈ C∞(ω). There exist constants ci = ci(d, p) such

that for x, y ∈ C∞(ω), t ≥ 1 with

Sx(ω) ∨ |x− y|1 ≤ t,

the transition density qωt (x, y) = Px(Yt = y)/µ(y) of Y satisfies:

c1t
−d/2e−c2|x−y|

2
1/t ≤ qωt (x, y) ≤ c3t−d/2e−c4|x−y|

2
1/t.

M.T. Barlow. Ann. Prob., vol. 32, 3024-3084, (2004).

M.T. Barlow & J.-D. Deuschel, Ann. Prob., vol.38, 234–276,(2010).
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Theorem. Let d ≥ 2 and σ ∈ (0, 1). There exist random variables

Sx, x ∈ Zd, such that

P (Sx(ω) ≥ n) ≤ c1 exp(−c2nσ), (1)

and constants ci (depending only on d and the distribution of µe)

such that the following hold.

If |x− y|2 ∨ t ≥ S2
x, then

qωt (x, y) ≤ c3t−d/2e−c4|x−y|
2/t when t ≥ |x− y|,

qωt (x, y) ≤ c3 exp(−c4|x− y|(1 ∨ log(|x− y|/t))) when t ≤ |x− y|.

If t ≥ S2
x ∨ |x− y|1+σ, then

qωt (x, y) ≥ c5t−d/2e−c6|x−y|
2/t. (2)
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Application to the Voter Model.

The underlying graph is Zd and

The measures δ0 and δ1 of point mass are invariant.

Theorem. Let d = 1 or 2. Suppose that (µe) are i.i.d. and µe ≥
1 P-a.s. There exists Ω0 ⊆ Ω with P(Ω0) = 1. For any ω ∈ Ω0,

the voter model has only two extremal invariant measures: δ0 and

δ1.

Remark: I. Ferreira, The probability of survival for the biased voter model in a random environment,

Stochastic Processes and Their Appl., vol.34, (1990), 25–38.
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Part III: Speed
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lim
n→∞

|Xn|
n

if exists, is called the speed of SRW {Xn},
where |x| is the graphic distance from x to o.

Example: SRW on Zd has zero speed.
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Theorem. The speed of the simple random walk on an infinite cluster

of a transitive graph G exits, and is positive if Cheeger constant of G
is positive.

I. Benjamini, R. Lyons and O. Schramm (1999), Percolation perturbation in potential theory and

random walk. In Random Walks and Discrete Potential Theory, 56-84, Cambridge Univ. Press.

Cheeger constant

ι(G) = inf
|∂S|
|S|

where the infinium is over all finite connected subsets S ⊂ V (G),

|S| the cardinality of S. ∂S the set of boundary edges.
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Conjecture (BLS). If G is a Cayley graph on which simple random walk

has positive (zero) speed, then a.s., simple random walk on each infinite

cluster of p-Bernoulli percolation has positive (zero) speed.

1. Cheeger constant> 0;

2. sub-exponential growth ( =⇒ Cheeger constant = 0);

3. Exponential growth and the Cheeger constant = 0.

Cheeger constant> 0 =⇒ speed> 0.

H. Kesten, Trans. AMS, Vol. 92, 336-354 (1959).
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The Case of sub-exponential growth.

lim sup |{x ∈ V (G) : |x| ≤ n}|1/n = 1

Theorem. If a graph G has sub-exponential growth, then simple random

walk on G has zero speed.

N. Th. Varopoulos,Bull. Sci. Math., Vol. 109, 225-252,(1985).

Corollary. The SRW on any open cluster of a graph with sub-exponential

growth has zero speed.
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How about an Cayley graph with exponential growth and ι(G) = 0?

e.g. Lamplighter groups Gd

A vertex of Gd can be identified as

(m, η) ∈ Zd × {finite subsets of Zd}.

Heuristically, Zd is the set of lamps, η is the set of lamps which are on, and

m is the position of the lamplighter, or “marker”.

Each vertex of Gd has degree 2d+ 1.
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Example. d = 1, the neighbors of (m, η) are

(m+ 1, η), (m− 1, η) and (m, η∆{m}),

where η∆{m} is η \ {m} ifm ∈ η, and is η ∪ {m} ifm /∈ η.

Theorem. The simple random walk on the Cayley graph Gd of the lamp-

lighter group has speed zero for d = 1, 2 and has positive speed for

d ≥ 3.

V.A. Kaimanovich and A.M. Vershik, Ann. Probab., Vol.11, 457-490, (1983).
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Theorem.

(1) Let d = 1 or 2. Then the simple random walk on the infinite cluster of

Gd has zero speed, a.s.

(2) Suppose that d ≥ 3. If p > pc(Zd) > pc(Gd), then the simple

random walk on the infinite cluster of Bernoulli bond percolation in Gd has

positive speed a.s. on the event that o is in the infinite cluster.

D. Chen & Y. Peres, with an appendix by Gabor Pete, Ann. Prob., Vol.32, No.4, (2004), 2978-2995.

Partially verifies the BLS Conjecture that the positivity of the speed is pre-

served.
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Generalization: Replace Zd by the Cayley graph of a finitely generated

infinite groupG. Replace {0, 1} by the Cayley graph of a finite group F .

W = G n
∑
x∈G F is a semi-direct product ofG with the direct sum of

copies of F indexed byG.

Vertices ofW are identified as {(m, η) : m ∈ V (G), η ∈
∑
x∈G F}.

(m, η) and (m1, ξ), are neighbors if either

(i) m = m1, η(x) = ξ(x) for all x 6= m, and η(m) is a neighbor of

ξ(m) in F , or

(ii) η = ξ,m andm1 are neighbors inG.
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Theorem 1’. Suppose thatG is a recurrent Cayley graph and that F is the

Cayley graph of a finite group. Then the simple random walk on the infinite

cluster of supercritical Bernoulli bond percolation inW = Gn
∑
x∈G F

has zero speed a.s.

Theorem 2’. Let 0 < p < 1. Suppose that the infinite cluster of p-

Bernoulli bond percolation on the Cayley graph G is transient and that F

is the Cayley graph of a finite group. Then the simple random walk on the

infinite cluster of p-Bernoulli bond percolation in W = G n
∑
x∈G F

has positive speed a.s.

D. Chen & Y. Peres, with an appendix by Gabor Pete, Ann. Prob., Vol.32, No.4, (2004), 2978-2995.
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Question (posed by Yueyun Hu):

Is the speed of the simple random walk on an infinite cluster of a

(transitive) graph increasing in p?

No for the binary tree with pipes. The speed can be calculated and is not

monotone.

1

3

(2p− 1)2

p2 + (1− p)2

1− p(
2p3 − 6p2 + 3p+ 3

).
Yes for regular trees, and for Galton-Watson tree.

The question remains largely unanswered. Z× Td?
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Galton-Watson tree is a sample point of a Galton-Watson process, which is

uniquely determined by the offspring distribution {p0, p1, p2, . . .}. Let

q be the extinction probability, i.e., q =
∑
k pkq

k. Then

Speed =
∞∑
k=0

pk
k − 1

k + 1

1− qk+1

1− q2
.

Lyons, R., Pemantle, R. & Peres, Y., Ergodic Theory Dynamical Systems, vol. 15, 593–619, (1995).

Theorem. The speed of the simple random walk on an infinite cluster of

a Galton-Watson tree is increasing in p. Furthermore it is differentiable in

(1/m, 1).

D. Chen & Fuxi Zhang, Acta Mathematica Sinica, English Series, Vol. 23, 1949-1954, (2007).
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Part IV: Anchored Expansion Constant
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Cheeger constant

ι(G) := inf

{|∂S|
|S|

: S ⊂ V (G), S is connected, 1 ≤ |S| <∞
}

Bad News: The Cheeger constant of an open cluster is 0.

Anchored Expansion Constant ι∗E(G)

lim inf
n→∞

{|∂S|
|S|

: o ∈ S ⊂ V (G), S is connected, n ≤ |S| <∞
}

Independent of the choice of the basepoint o and ιE(G)≤ι∗E(G).
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Theorem.

Let G be a bounded degree graph with ι∗E(G) > 0. Then the simple

random walk {Xn} in G, started at o, satisfies lim infn→∞ |Xn|/n
> 0 a.s. and there existsC > 0 such that

P [Xn = o] ≤ exp(−Cn1/3) for all n ≥ 1.

B. Virág, Geom. Funct. Anal., Vol. 10, 1588-1605, (2000).
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Theorem. Consider p-Bernoulli percolation on a graphGwith ι∗E(G) >

0. If p < 1 is sufficiently close to 1, then almost surely on the event that

the open cluster C containing o is infinite, we have ι∗E(C) > 0.

Our proof shows the conclusion holds for all p > 1− h/(1 + h)1+
1
h where h = ι∗E(G).

A refinement of the argument by Gabor Pete shows the conclusion holds for all p > 1/(ι∗E(G) + 1).

Remark: Theorem 2 of Benjamini and Schramm (1996) states that pc(G) ≤ 1/(ιE(G) + 1),

but their proof yields the stronger inequality pc(G) ≤ 1/(ι∗E(G) + 1).
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∂VS = the set of vertices in Sc having a neighbor in S.

The vertex version of anchored expansion constant

ι∗V (G) := lim
n→∞

inf

{
|∂VS|
|S|

: o ∈ S ⊂ V (G), S is connected, n ≤ |S| <∞
}
.

Theorem (Gabor Pete). Suppose that ι∗V (G) > 0. Consider p-

Bernoulli site percolation on a graph G. If p > 1/(ι∗V (G) + 1),

then almost surely on the event that the open cluster C containing o

is infinite, it satisfies ι∗V (C) > 0.

Then the corresponding form of the arguments needs no modification.
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Questions: Suppose that ι∗E(G) > 0.

Is the anchored expansion constant of a cluster positive for all p > pc?

Yes for regular trees.

Is the anchored expansion constant of a cluster monotone in p?

No answer even for regular trees.
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————————
Thank You

————————
E-mail: dayue@pku.edu.cn


