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Introduction

These lectures will focus on some aspects of the dynamics of disordered
systems. Our main interest is to understand the long-term behavior of
these dynamics in situations when they the systems approaches equilib-
rium very slowly. In the physics literature, the paradigm of ageing has
been introduced to characterize this behavior.

1.1 Characterisation of ageing

The term ageing refers to properties of a system out of equilibrium. In
principle, this property refers to real (physical) systems. In the widest
sense we can describe it as follows. Assume a systems is prepared (pro-
duced) at some initial time t0. Then the system is left to itself. After
some time tw (called waiting time, an experimentalist may perform some
measurement on the system. The question is, whether the experimental-
ist will be able to deduce the elapsed waiting time from his observation.
If the answer is yes, we will say that the system ages, otherwise it does
not.

Of course, this is a very general characterization and we will be inter-
ested in more specific situations. There are a number of clear real-world
examples:

• many living beings, such as humans;
• wine....
• steel under stress
• plastics
• glasses
• unmagnetized iron placed in a magnetic field
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2 1 Introduction

• a magnetized material when the magnetic field is switched off

and many many more.
In these lectures we will be concerned with mathematical models that

correspond to this behavior. Again, one could look at very general dy-
namical systems, but we will confine our interest exclusively to Markov

processes.
Let us introduce some notation.

1.2 Trap models

The best studied models for aging are the so-called trap models, intro-
duced essentially by Bouchaud and Dean [10, 11]. These models were
introduced as caricatures of more realistic models, but they teach us
something about how one would like to think about ageing systems. Let
us give a general definition.

A trap model has the following ingredients:

(i) A graph, G = (E ,V); this can either be an infinite graph or a family,
GN , of finite graphs such that |GN | ↑ ∞.

(ii) A random environment of traps, i.e. a family of positive random
variables, τi, i ∈ V . The usual assumptions in trap models are that
these are independent and identically distributed, and, moreover that
they are in the domain of attraction of an α-stable distribution with
α < 1, i.e. limt↑∞ tαP[τi > t] = 1. In particular Eτi = +∞.

(iii) For any realization of the random variables τi, a continuous time
Markov chain, Xt with state space V and transition rates

p(i, j) =





τ1−a
i τa

j , if (i, j) ∈ E ,
∑

k:(i,k)∈E τ
1−a
i τa

k , if i = j)

0, , else

(1.1)

for some parameter 0 ≤ a ≤ 1.

Note that with this choice, the Markov process is reversible with respect
to the measure µ(i) ≡ τ−1

i on V .
We will in these lectures mainly consider the case a = 0, which is the

original choice of Bouchaud. In that case the dynamics has a simple
description: starting in some site, i, the process waits an exponential
time with mean τi, and then moves on uniformly to one of its neighbors
in the graph G. Now the random variables τi, i.e. the trapping times,
have a very heavy-tailed distribution, so that as the process wanders
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about, it can find ever deeper traps, i.e. sites where it will wait longer
and longer. So if it is the case that the process, by time T is with large
probability in a trap whose waiting time is of order g(T ), then we can
indeed determine the age of the process by studying its current typical
sejourntimes. The nice feature of trap models in that respect is that
the state space has site by site a temporal characteristic, a feature that
more complicated models do not immediately show.

There has been a considerable amount of work done on trap models in
the case when G = GN is the complete graph and when G = Z

d, mostly
by Ben Arous and Černý [7, 2, 3, 3, 4].

We see that we will always be working with Markov process in random
environments. It will be convenient to fix some notation once and for
all.

Let (Ω,F) be the measure space on which the random variables τi are
defined, and let (D0(V),B(D0(V))) be the measure space of càdlàgfunc-
tions with values in V . We consider the product space (Ω×D0(V),F ×
B(D0(V))), where F ×B(D0(V)) is of course the product sigma-algebra.
On this space we define a probability measure, P, as follows:

(i) The marginal distribution of the random variables τi under P is the
product measure with identical one-dimensional marginals given by
the distribution of the τi.

(ii) The conditional distribution of P, given F , Pτ ≡ P[·|B(D(V))], is the
law of the Markov chain described above.

One can easily check that this prescription fixes the joint law of the pro-
cess X and the random variables τi. The measure Pτ is often called the
quenched law. Rather abusively, the marginal of P in (D0(V),B(D0(V)))

is called the annealed law by some authors, but this should be avoided.
When studying trap models, the most commonly used correlation

functions are

R[tw, t] ≡ P[X(tw + t) = X(tw)], (1.2)

respectively its quenched version

Rτ [tw, t] ≡ Pτ [X(tw + t) = X(tw)]. (1.3)

Another correlation function is

Π[tw , t] ≡ P[X(tw + s) = X(tw), ∀0 ≤ s ≤ t], (1.4)

respectively

Πτ [tw, t] ≡ Pτ [X(tw + t) = X(tw), ∀0 ≤ s ≤ t]. (1.5)
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One could of course, instead of just asking that X(s) = X(tw) ask for a
milder version, like dist (X(s), X(tw)), for some distance, or one might
ask for the distribution of such a distance. However, as again we will
see later, it is in the spirit of the trap model to use the strict definition
above: for large times, very deep traps are quite isolated, and so the
right thing to realize the event is for the process to be in the same deep
trap (most of) all the time.

One now speaks about ageing systems, if these functions, as t and tw
become large, do not become independent of tw.

1.3 Glauber dynamics

Trap models may reproduce ageing behavior, but they are in some sense
ad hoc models, that are not motivated by microscopic physical models.
In particular, they have two features that seem artificial built in: the
independence of the traps and the heavy tails of the distribution of the
traps.

Models that are a step closer to reality are Glauber dynamics of (ran-
dom) spin systems. Here we consider as state space the hypercube
SN ≡ {−1, 1}N (we could also be more general), and defined on this
an energy function (Hamiltonian) HN (σ) which may depend on a ran-
dom parameter, i.e. may be considered as a random process indexed by
SN . The examples we will be concerned with here are so-called mean-

field spin glasses, where HN is a centered Gaussian process with some
covariance

cov(HN (σ), HN (σ′)) = Nf(dist N (σ, σ′)),

for some function f such that f(0) = 1 and dist N a normalized distance.
The most prominent examples are the p-spin interaction Sherrington-
Kirkpatrick models, where

cov(HN (σ), HN (σ′)) = NRN (σ, σ′)p, (1.6)

with RN (σ, σ′) ≡ N−1
∑n

i=1 σiσ
′
i. Given such a Hamiltonian, one con-

structs a Gibbs measure

µβ,N(σ) ≡ 2−N exp(−HN (σ))

Zβ,N
, (1.7)

where Zβ,N is such that µβ,N is a probability.
A Glauber dynamics is then a (discrete or continuous time) Markov

chain that is reversible with respect to this measure. In most cases, one
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assumes also that only transitions are allowed in which a single spin is
flipped at a time. Popular rates are: Metropolis rates :

p(σ, σ′) = exp (−β[HN (σ′) −HN (σ)]+) , if |σ − σ′| = 2 (1.8)

and zero else; particularly nice are random time change rates:

p(σ, σ′) = exp (βHN (σ)) , if |σ − σ′| = 2 (1.9)

We see that in these dynamics, neither independence nor heavy tails
appear. Nonetheless, one expects that under suitable conditions, trap
model dynamics emerges as appropriate description of the long time
behavior of these models (when N ↑ ∞).
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Some equilibrium results: The REM

In this chapter I will briefly present some of the ideas surrounding
the equilibrium properties of spin-glasses in the simplest case the REM.
This will then motivate the REM-like trap model in a heuristic way, and
we will later see to what extend this heuristics can be justified.

We will work on the configuration space SN ≡ {−1, 1}N , although for
some time that may look quite artificial. The simplest (from a proba-
bilistic point of view) energy landscape we can define are of course iid
random variables. Thus we set

HN (σ) = −
√
NXσ (2.1)

where Xσ, σ ∈ SN , are 2N i.i.d. standard normal random variables.
The first things to look for are the minima of this function, i.e. the

maxima of the Xσ. Now for iid random variables, this is a well studied
problem in the field of extreme value statistics. We begin with a simple
observation.

Lemma 2.0.1 The family of random variables introduced above satisfies

lim
N↑∞

max
σ∈SN

N−1/2Xσ =
√

2 ln 2 (2.2)

both almost surely and in mean.

Proof Since everything is independent,

P

[
max
σ∈SN

Xσ ≤ u

]
=

(
1 − 1√

2π

∫ ∞

u

e−x2/2dx

)2N

(2.3)

and we just need to know how to estimate the integral appearing here.
This is something we should get used to quickly, as it will occur all over
the place. It will always be done using the fact that, for u > 0,

6



Some equilibrium results: The REM 7

1

u
e−u2/2

(
1 − 2u−2

)
≤
∫ ∞

u

e−x2/2dx ≤ 1

u
e−u2/2 (2.4)

2N

√
2π

∫ ∞

uN (x)

e−z2/2dx = e−x (2.5)

then (for x > − lnN/ ln 2)

uN (x) =
√

2N ln 2+
x√

2N ln 2
− ln(N ln 2) + ln 4π

2
√

2N ln 2
+ o(1/

√
N) (2.6)

Thus

P

[
max
σ∈SN

Xσ ≤ uN (x)

]
=
(
1 − 2−Ne−x

)2N

→ e−e−x

(2.7)

In other terms, the random variable u−1
N (maxσ∈SN Xσ) converges in

distribution to a random variable with double-exponential distribution
(known as the Gumbel distribution).

Next we turn to the analysis of the partition function.

Zβ,N ≡ 2−N
∑

σ∈SN

eβ
√

NXσ (2.8)

This will be important, because we will want to consider processes whose
invariant measure is given by the so-called Gibbs measure,

µβ,N(σ) ≡ Z−1
β,Ne

−βHN (σ).

A first guess would be that a law of large numbers might hold, implying
that Zβ,N ∼ EZβ,N , and hence

lim
N↑∞

Φβ,N = lim
N↑∞

1

N
ln EZβ,N =

β2

2
, a.s. (2.9)

Holds only for small enough values of β!

Theorem 2.0.2 In the REM,

lim
N↑∞

EΦβ,N =

{
β2

2 , for β ≤ βc

β2
c

2 + (β − βc)βc, for β ≥ βc

(2.10)

where βc =
√

2 ln 2.

Proof We use the method of truncated second moments.
We will first derive an upper bound for EΦβ,N . Note first that by

Jensen’s inequality, E lnZ ≤ ln EZ, and thus

EΦβ,N ≤ β2

2
(2.11)
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On the other hand we have that

E
d

dβ
Φβ,N = N−1/2

E
EσXσe

β
√

NXσ

Zβ,N
(2.12)

≤ N−1/2
E max

σ∈SN

Xσ ≤ β
√

2 ln 2(1 + C/N)

for some constant C. Combining (2.11) and (2.12), we deduce that

EΦβ,N ≤ inf
β0≥0

{
β2

2 , for β ≤ β0

β2
0

2 + (β − β0)
√

2 ln 2(1 + C/N), for β ≥ β0

(2.13)
It is easy to see that the infimum is realized (ignore the C/N correc-

tion) for β0 =
√

2 ln 2. This shows that the right-hand side of (2.10) is
an upper bound.

It remains to show the corresponding lower bound. Note that, since
d2

dβ2 Φβ,N ≥ 0, the slope of Φβ,N is non-decreasing, so that the theorem

will be proven if we can show that Φβ,N → β2/2 for all β <
√

2 ln 2, i.e.
that the law of large numbers holds up to this value of β. A natural idea
to prove this is to estimate the variance of the partition function One
would compute

EZ2
β,N = EσEσ′Eeβ

√
N(Xσ+Xσ′ )

= 2−2N



∑

σ 6=σ′

eNβ2

+
∑

σ

e2Nβ2


 (2.14)

= eNβ2
[
(1 − 2−N ) + 2−NeNβ2

]

where all we used is that for σ 6= σ′ Xσ and Xσ′ are independent. The
second term in the square brackets is exponentially small if and only if
β2 < ln 2. For such values of β we have that

P

[∣∣∣∣ln
Zβ,N

EZβ,N

∣∣∣∣ > εN

]
= P

[
Zβ,N

EZβ,N
< e−εN or

Zβ,N

EZβ,N
> eεN

]

≤ P

[(
Zβ,N

EZβ,N
− 1

)2

>
(
1 − e−εN

)2
]

≤
EZ2

β,N/(EZβ,N)2 − 1

(1 − e−εN)2

≤ 2−N + 2−NeNβ2

(1 − e−εN)2
(2.15)
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which is more than enough to get (2.9). But of course this does not
correspond to the critical value of β claimed in the proposition!

Instead of the second moment of Z one should compute a truncated
version of it, namely, for c ≥ 0,

Z̃β,N(c) ≡ Eσe
β
√

NXσ1IXσ<c
√

N (2.16)

An elementary computation using (2.4) shows that, if c > β, then

EZ̃β,N (c) = e
β2N

2

(
1 − e−Nβ2/2

√
2πN(c− β)

(1 +O(1/N)

)
(2.17)

so that such a truncation essentially does not influence the mean par-
tition function. Now compute the mean of the square of the truncated
partition function (neglecting irrelevant O(1/N) errors):

EZ̃2
β,N(c) = (1−2−N)[EZ̃β,N (c)]2 +2−N

Eeβ
√

N2Xσ1IXσ<c
√

N ) (2.18)

where

E e2β
√

NXσ1IXσ<c
√

N =





e2β2N , if 2β < c

2−N e2cβN− c2N
2

(2β−c)
√

2πN
, otherwise,

(2.19)

Combined with (2.17) this implies that, for c/2 < β < c,

2−N
E e2β

√
NXσ1IXσ<c

√
N(

E Z̃N,β

)2 =
e−N(c−β)2−N(2 ln 2−c2)/2

(2β − c)
√
N

(2.20)

Therefore, for all c <
√

2 ln 2, and all β < c,

E

[
Z̃β,N(c) − EZ̃β,N (c)

EZ̃β,N (c)

]2

≤ e−Ng(c,β) (2.21)

with g(c, β) > 0. Thus Chebyshev’s inequality implies that

P

[
|Z̃β,N(c) − EZ̃β,N (c)| > δEZ̃β,N(c)

]
≤ δ−2e−Ng(c,β) (2.22)

and so, in particular,

lim
N↑∞

1

N
E ln Z̃β,N(c) = lim

N↑∞

1

N
ln EZ̃β,N(c) (2.23)

for all β < c <
√

2 ln 2 = βc. But this implies that for all β < βc, we can
chose c such that

lim
N↑∞

1

N
ln EZβ,N ≥ lim

N↑∞

1

N
ln EZ̃β,N(c) =

β2

2
(2.24)

This proves the theorem.
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Next we will turn to a more refined analysis of what happens if β ≥√
2 ln 2. The key result is the following:

Theorem 2.0.3 Let P denotes the Poisson point process on R with

intensity measure e−xdx. Then, in the REM, with α−1 = β/
√

2 ln 2, if

β >
√

2 ln 2,

e−N [β
√

2 ln 2−ln 2]+ 1
2 a [ln(N ln 2)+ln 4π]Zβ,N

D→
∫ ∞

−∞
eαzP(dz) (2.25)

and

N (Φβ,N − EΦβ,N )
D→ ln

∫ ∞

−∞
ez/αP(dz) − E ln

∫ ∞

−∞
ez/αP(dz).

(2.26)

Proof Basically, the idea is very simple. We expect that for β large,
the partition function will be dominated by the configurations σ cor-
responding to the largest values of Xσ. Thus we split Zβ,N carefully
into

Z≤x
N,β ≡ Eσe

β
√

NXσ1I{Xσ≤uN (x)} (2.27)

and Z>x ≡ Zβ,N − Z≤x
β,N . Let us first consider the last summand. It is

convenient to rewrite this as (we ignore the sub-leading corrections to
uN(x) and only keep the explicit part of (2.6))

Z>x
β,N = 2−N

∑

σ∈SN

eβ
√

NuN (u−1
N (Xσ))1I{u−1

N (Xσ)>x}

= eN(β
√

2 ln 2−ln 2)− 1
2α [ln(N ln 2)+ln 4π] (2.28)

×
∑

σ∈SN

eα−1u−1
N (Xσ)1I{u−1

N (Xσ)>x} (2.29)

≡ 1

C(β,N)

∑

σ∈SN

eα−1u−1
N (Xσ)1I{u−1

N (Xσ)>x} (2.30)

where C(b,N) is defined through the last identity. The key to most
of what follows relies on the famous result on the convergence of the
extreme value process to a Poisson point process (for a proof see, e.g.,
[16]):

Theorem 2.0.4 Let PN be point process on R given by

PN ≡
∑

σ∈SN

δu−1
N (Xσ) (2.31)

Then PN converges weakly to a Poisson point process on R with intensity

measure e−xdx.
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Clearly, the weak convergence of PN to P implies convergence in law
of the right-hand side of (2.28), provided that ex/α is integrable on [x,∞)

w.r.t. the Poisson point process with intensity e−x. This is, in fact, never
a problem: the Poisson point process has almost surely support on a
finite set, and therefore ex/α is always a.s. integrable. Note, however,
that for β ≥

√
2 ln 2 the mean of the integral is infinite, indicating the

passage to the low-temperature regime.

Lemma 2.0.5 Let Z>x
β,N , α be defined as above, and let P be the Poisson

point process with intensity measure e−zdz. Then

C(β,N)Z>x
β,N

D→
∫ ∞

x

ez/αP(dz) (2.32)

Next we show that the contribution of the truncated part of the par-
tition function is negligible compared to this contribution. For this it is
enough to compute the mean values

EZ≤x
β,N ∼ eNβ2/2

uN (x)−1β
√

N∫

−∞

dz√
2π
e−

z2

2

∼ eNβ2/2 e−(uN (x)−β
√

N)2/2

√
2π(β

√
N − uN (x))

∼ 2−Nex(α−1−1)

α−1 − 1
eN(β

√
2 ln 2−ln 2)− 1

2α [ln(N ln 2)+ln 4π]

=
ex(α−1−1)

α−1 − 1

1

C(β,N)
(2.33)

so that

C(β,N)EZ≤x
β,N ∼ ex(α−1−1)

α−1 − 1

which tends to zero as x ↓ −∞, and so C(β,N)EZ≤x
β,N converges to zero

in probability. The assertions of Theorem 2.0.3 follow.

Now note that the right hand side of (2.25) really is a sum, i.e. if we
denote by xi, i ∈ N the atoms of the Poisson point process P , then the
right hand side of (2.25) can be written as

Zα ≡
∑

i∈N

exi/α (2.34)

which can be thought of the partition function of a model with state
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space N and Hamiltonian H(i) = xi, where xi are the atoms of our Pois-
son process, and temperature α. This model then captures the asymp-
totics of the random fluctuations of the partition function of the REM.
Of course we can associate a Gibbs measure να to this model, via

να(i) ≡ exi/α

Zα
. (2.35)

In the next section we will consider a model that effectively can be seen
as a Glauber dynamics corresponding to this model. This will be the
REM-like trap model of Bouchaud. In Chapter 3 we will than see how
the dynamics of the real REM is related to this one.
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The REM-like trap model

We will now investigate in some detail the simplest of all trap models,
called the REM like trap model. The idea is that this should correspond
to the dynamics associated to the limiting model associated to the Pois-
son process that described the asymptotics of the partition function of
the REM. Thus, in principle, we would like to define a model with state
space N, reversible with respect to the measure να defined in (2.35).
It remains to fix the probabilities to go from one state i to another.
The natural choice would be the uniform distribution, but of course this
makes non sense (immediately). Therefore, one goes through a limit-
ing proceedure: fix an energy −E, and consider only the sites i with
xi > −E. We know that the number of these sites is Poisson with rate
eE. The values of the corresponding xi are independent exponential on
(−E,∞). Now condition on the fact that the Poisson variable takes
the value, N ∼ eE , and shift energies by E, i.e. set Ei = xi + E (this
corresponds to a change of time scale). Then we have N sites with ex-
ponential random variables on [0,∞). It remains to notice that if x is
an exponential random variable with mean 1 on [0,∞), the ex/α has the
distribution αz−1−αdz.

The resulting model is a trap model with G = GN is the complete
graph on N vertices, a = 0, and the τi have the form τi = exp(+Ei/α),
where Ei are iid exponential random variables. We will assume that the
initial distribution at time zero is the uniform distribution.

We will present three ways to analyze this model.

13
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3.1 The renewal theory approach.

We first follow the approach initiated by Bouchaud to study the correla-
tion function ΠN [tw, t] in this simple model. We will always assume that
initially, the process starts from the uniform distribution on {1, . . . , N}.

Let us begin with the statement of the result.

Proposition 3.1.6 Define

H0(w) ≡ 1

π cosec (πα)

∫ ∞

w

dx
1

(1 + x)xα
(3.1)

Then, for α > 0,

lim
N↑∞

ΠN (tw, t)

H0(tw/t)
= 1, P -a.s. (3.2)

Moreover, the asymptotic behavior of H0(w) when w tends to zero or ∞,

respectively, is readily evaluated:

(i) If w ↓ 0,

H0(w) = 1− 1

π cosec (πα)

∫ w

0

dx
1

(1 + x)xα
∼ 1− w1−α

(1 − α)π cosec (πα)
(3.3)

(ii) If w ↑ ∞,

H0(w) ∼ 1

π cosec (πα)

∫ ∞

w

dx
1

x1+α
=

wα

(α)π cosec (πα)
(3.4)

In the remainder of this subsection we outline the proof of this theo-
rem.

Lemma 3.1.7 The function ΠN (tw, t) satisfies the equations

ΠN (tw, t) = 1 − FN (tw + t) +

∫ t

0

ΠN (, t− u)dFN (u) (3.5)

Proof The proof of this lemma is elementary. Just notice that to realize
the event defining, the process may either never jump, or it has to make
a first jump before at some time u < tw. Since the jump takes the
system back to the uniform distribution, we can renew from that time.

Remember that we study the solution of this equation in the limit
when N ↑ ∞. Our first step will be to replace FN by its limit. Justifying
these passages to the limits can be done using concentration of measure
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techniques, but we will not go into these technical points here. Accepting
that this is justified, we get

F∞(t) ≡ 1 − α

∫ ∞

1

dxe−t/xx−1−α

which is no longer random. Let Π∞(s, t) denote the unique solution of
the equation

Π∞(tw, t) = 1 − F∞(tw + t) +

∫ t

0

Π∞(tw, t− u)dF∞(u) (3.6)

Lemma 3.1.8 For all tw, t ≥ 0,

lim
N↑∞

ΠN (tw, t) = Π∞(tw, t),P-a.s (3.7)

The limiting equation (3.6) is solved following standard procedures
(see e.g. [15]). One defines the renewal function M(t) that solves the
equation

M(t) = F∞(t) +

∫ t

0

M(t− u)dF∞(u) (3.8)

In terms of this function, the solution of (3.6) is then given as

Π∞(tw, t) = 1 − F∞(tw + t) +

∫ t

0

(1 − F∞(tw + t− u))dM(u) (3.9)

Setting f∞(t) ≡ F ′
∞(t),

f∞(t) = α

∫ ∞

1

e−t/xx−2−αdx (3.10)

Denote by g∗ the Laplace transform of a function g, i.e. g∗(u) =∫∞
0 e−utg(t).

F ∗
∞(u) = u−1 − α

∫ ∞

1

dx

(ux+ 1)xα
(3.11)

= u−1 − αu−1+α

∫ u∞

u

dx

(1 + x)xα

In the last expression, the integration is understood to be along a trans-
formed path in the complex plane if u is complex. Performing the change
of variable x = y−1 − 1,

∫ ∞

u

dx

(1 + x)xα
=

∫ 1/(1+u)

0

dy

(1 − y)αy1−α
=

∫
u/(1 + u)

1
z−α(1−z)−α+1.

(3.12)
One recognizes the Beta integral
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∫ 1

0

dy

(1 − y)µ−1yν−1
=

Γ(µ)Γ(ν)

Γ(µ+ ν)
. (3.13)

Thus
∫ ∞

0

dx

(1 + x)xα
= Γ(α)Γ(1 − α) =

π

sin(πα)
= π cosec (πα) (3.14)

Thus, when u → 0, the integral in (3.11) converges to the constant
π cosec (πα). Similarly, we have that

f∗
∞(u) = α

∫ ∞

1

1

1 + ux
x−1−αdx (3.15)

In particular, f∗
∞(0) = 1, and

1 − f∗
∞(u) = α

∫ ∞

1

(
1 − 1

1 + ux

)
x−1−αdx = αuα

∫ u∞

u

dx

(x+ 1)xα

(3.16)
Taking the Laplace transform of (3.8) this implies that

M∗(u) =
F ∗
∞(u)

1 − f∗
∞(u)

=
1

αu1+α
∫ u∞

u
dx

(1+x)xα

− u−1 (3.17)

and, by classical results on the asymptotics of the inverse Laplace trans-
form (see [Doe], Vol. 2, Section 7), this in turn implies that for t ↑ +∞,

M(t) ∼ tα

παΓ(α) cosec (πα)
− 1 (3.18)

Finally, we can compute the asymptotics of the solution of equation
(3.6). Here we will directly make use of the fact that the Laplace trans-
form of Π∞(s, t) is given explicitly as

Π∗
∞(u, tw) =

α
∫∞
1
e−tw/x dx

(ux+1)x1/α

1 − f∗
∞(u)

(3.19)

we have already established the asymptotics of 1 − f∗
∞(u) near u = 0.

We still need to treat the numerator. It will be convenient to write

α

∫ ∞

1

e−tw/x dx

(ux+ 1)xα
= α

∫ ∞

1

dx

∫ ∞

tw/x

dve−v 1

(ux+ 1)xα
(3.20)

= α

∫ ∞

0

dve−v

∫ ∞

tw/v∧1

dx
1

(ux+ 1)xα

= α

∫ ∞

0

dve−v

∫ ∞

tw/v

dx
1

(ux + 1)xα

−α
∫ ∞

tw

dve−v

∫ 1

tw/v

dx
1

(ux+ 1)xα
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Now the first term can be conveniently represented as uα times an ex-
plicit Laplace transform:

α

∫ ∞

0

dve−v

∫ ∞

tw/v

dx
1

(ux+ 1)xα
= αuα

∫ ∞/u

0

dve−uv

∫ u∞

tw/v

dx
1

(x + 1)xα

(3.21)
Note that since all integrands vanish at infinity in the right-half plane,
0/u and u∞ can be replaced with 0 and ∞, resp., i.e. the integration
contours can be deformed to integrations along the real line. We will
show that this term is the dominant one.

In fact, combining (3.16) with (3.20) we get from (3.19) that

Π∗
∞(u, tw) =

∫∞/u

0 dve−uv
∫ u∞

tw/v dx
1

(1+x)xα

∫∞
u

dx
(1+x)xα

(3.22)

−
∫∞

tw
dve−v

∫ 1

tw/v
dx 1

(u+1/x)xα

uα
∫∞

u
dx

(1+x)xα

Now the integral in the denominator equals
∫ ∞

u

dx

(1 + x)xα
=

∫ ∞

0

dx

(1 + x)xα
−
∫ u

0

dx

(1 + x)xα
(3.23)

= π cosec (π/α) − u1−1/α
∞∑

n=0

(−1)n un

n+ 1 − 1/α

where the last sum is convergent for |u| < 1. Thus the leading singular
(at u = 0) term from the first term in (3.22) is given by∫∞

0 dve−uv
∫∞

tw/v dx
1

(1+x)xα

π cosec (πα)
(3.24)

which obviously is the Laplace transform of the function H0(tw/t).
It remains to consider the second term in (3.22). Here the numerator

converges to a constant as u tends to zero, in fact, at u = 0 it equals
∫ ∞

tw

dve−v

∫ 1

tw/v

dx
1

xα
=

1

1 − α

∫ ∞

tw

dye−y
[
1 − y1−α

]
≤ const.e−tw

(3.25)
Therefore the leading asymptotic of the second term is given by

Const.u−α e−tw (3.26)

The inverse Laplace transform of the second term has therefore the lead-
ing asymptotic behavior

H1(tw, t) ∼ Const.tα−1 e−tw (3.27)
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Note that while the asymptotics in t looks the same as that of the second
term of H0(tw/t) in the case tw/t ↓ 0, due to the exponential decay in tw,
this term can be neglected if tw is large. Thus we have now established
the “aging” asymptotics found in Bouchaud.

3.2 The spectral approach

A second way to analyze ageing in this model is via spectral analysis.
This looks rather appealing since on may hope that ageing in rather more
general situations may be characterized through the spectral properties
of the generator of the corresponding Markov chain. This method was
developed in a paper with A. Faggionato [14]

Setting xi = 1/τi ≡ e−Ei/α, the infinitesimal generator of the REM-
like trap model is easily seen to be given by the following matrix:

LN ≡




(N−1)x1

N −x1

N . . . −x1

N

−x2

N
(N−1)x2

N . . . −x2

N
...

...
. . .

...
−xN

N −xN

N . . . (N−1)xN

N




(3.28)

We start by giving a complete description of the eigenvalues and eigen-
vectors of LN . Let µ = µN be the measure on SN with µ(i) = x−1

i = τi.
Note that LN is a symmetric operator on L2(µ) and, trivially, LNI = 0

where I is the vector with all entries equal to 1. The following proposi-
tion is based on elementary linear algebra:

Proposition 3.2.9 Let x1, x2, . . . , xN be all distinct. Then, LN has N

positive simple eigenvalues 0 = λ1 < λ2 · · · < λN such that

{λ1, λ2, . . . , λN} = {λ ∈ C : φ(λ) = 0},
where φ(λ) is the meromorphic function

φ(λ) ≡
N∑

j=1

λ

xj − λ
, (λ ∈ C). (3.29)

If the xi are labeled such that x1 < x2 < · · · < xN , then xi < λi+1 <

xi+1, for i = 1, . . . , N − 1. Moreover, for any i = 1, . . . , N , the vector

ψ(i) ∈ RN , defined as

ψ
(i)
j ≡ xj

xj − λi
, for j = 1, . . . , N,

is an eigenvector of LN with eigenvalue λi. ψ
(1), . . . , ψ(N) form an or-

thogonal basis of L2(µ).
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Since the xi have a absolutely continuous distribution, we trivially
have the

Corollary 3.2.10 The assertions of Proposition 3.2.9 hold with proba-

bility one for all N .

Proof Let λ be a generic eigenvalue and let us write the corresponding
eigenvector, ψ, as ψ = a(1, . . . , 1)t + w, where

∑N
j=1 wj = 0. Since

(LNψ)j = xjwj , we have to solve the system

xjwj = λa+ λwj , ∀j = 1, . . . , N. (3.30)

Since x1, . . . , xN are distinct, it must be true that a 6= 0 (otherwise we
get ψ = 0). Without loss of generality, we set a = 1. Note that λ 6= xj ,
for j = 1 . . .N , since otherwise (3.30) would imply that λ = 0 = xj .
Therefore we get wj = λ

xj−λ . Since it must be true that
∑N

j=1 wj = 0, we
get that λ is an eigenvalue with ψ s.t ψj =

xj

xj−λ , being the corresponding
eigenvector, iff φ(λ) = 0. This implies that φ has at most N zeros. Since
φ(0) = 0, and, for real λ, limλ↓xi φ(λ) = −∞, limλ↑xi φ(λ) = ∞, we get
that φ has exactly N zeros. From here the assertions of the theorem
follow immediately.

Proposition 3.2.9 has the following simple corollary:

Corollary 3.2.11 With probability one, the spectral distribution σN ≡
AvN

j=1δλj converges weakly to the measure αxα−1dx on [0, 1].

We will now show that Proposition 3.2.9 allows to derive the asymp-
totics of the autocorrelation functions easily. In fact, it contains far more
information on the long time behavior of the systems (see [14]).

Recall that pt(i, j), the probability to jump from i to j in an interval
of time t, can be expressed as pt(i, j) =

(
e−tLN

)
i,j
. In particular, by

writing νt for the probability distribution of YN (t) and thinking of the
Radon derivative dνt

dµ as column vector,

dνt

dµ
= e−tLN

dν0
dµ

,

we see that

dνt

dµ
=

N∑

k=1

< dν0

dµ , ψ
(k) >

< ψ(k), ψ(k) >
e−tλkψ(k). (3.31)

The above formulas are true for an arbitrary initial distribution. Taking
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ν0 to be the uniform distribution, by Proposition 3.2.9, we get

dνo

dµ
=

N∑

k=1

γkψ
(k), where γ−1

k ≡< ψ(k), ψ(k) >=

N∑

j=1

xj

(xj − λk)2
.

Then, by Proposition 3.2.9 and (3.31),

ΠN (t, tw) =

N∑

j=1

N∑

k=1

γke
−λktw

xj − λk
e−

N−1
N xjt (3.32)

(3.33)

This formula admits a nice complex integral representation as follows:

Lemma 3.2.12 Let γ be a positive oriented loop on C containing in

its interior λ1, . . . , λN . Let g be an holomorphic function on a domain

D ⊂ C with γ ⊂ D. Then, for any j = 1 . . . , N ,
N∑

k=1

γkg(λk)

xj − λk
=

1

2πi

∫

γ

g(λ)

φ(λ)(xj − λ)
dλ. (3.34)

Proof Let us set X ≡ {x1, . . . , xN} and Λ ≡ {λ1, λ2, . . . , λN}. Then,
φ(λ) is an holomorphic function on C \X , where φ′(λ) =

∑N
j=1

xj

(xj−λ)2 ,

and, in particular, φ′(λj) = γ−1
j . Moreover, the function [φ(λ)(xj −

λ)]−1, a priori defined on C \ (X ∪ Λ), can be analytically continued to
X as a meromorphic function with simple poles only at the points of
Λ. Now the conclusion follows from a trivial application of the residue
theorem.

We can obviously use Lemma 3.2.12 to rewrite Equation (3.32) in the
form

ΠN (t, tw) =
1

2πi

∫

γ

e−twλ

λ

(
Avj

e−
N−1

N xjt

xj − λ

/
Avj

1

xj − λ

)
dλ (3.35)

where Avj denotes the average over j = 1, 2, . . . , N .
The above integral representation of ΠN (t, tw) has two advantages.

First, the appearance of averages allows to compute their limiting be-
havior as N ↑ ∞ easily by using the ergodicity of the random field E.
Second, by means of the residue theorem, their Laplace transform can be
easily computed in order to derive the asymptotic behavior of ΠN (t, tw)

for N, tw, t� 1.
The next step is now to show that the contour integral representation

converges to a nice limiting expression as N ↑ ∞.
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Proposition 3.2.13 Let us define

Π(t, tw) ≡ 1

2πi

∫

γ

e−twλ

λ

Ex

(
e−xt

λ−x

)

Ex

(
1

λ−x

) dλ, (3.36)

where Ex is the expectation w.r.t. the measure αxα−1dx on [0, 1] and γ

is any positive oriented complex loop around the interval [0, 1]. Then,

lim
N↑∞

ΠN (t, tw) = Π(t, tw) ∀t, tw, a.s. . (3.37)

Proof Recall (3.35) and fix 0 < δ < 1/2. Due to analyticity, we can
choose the integration contour, γ, to have distance 1 from the segment
[0, 1]. For each λ ∈ γ, the random variables (xj −λ)−1, j ∈ N , are i.d.d.
and bounded. Therefore, for a suitable positive constant c > 0,

P
(∣∣∣∣AvN

j=1

1

xj − λ
− Ex

(
1

λ− x

)∣∣∣∣ ≥ N− 1
2+δ

)
≤ e−c N2δ ∀λ ∈ γ.

(3.38)
Since for each x ∈ [0, 1] and λ ∈ γ, | ∂

∂λ(x− λ)−1| ≤ 1, a simple chaining
argument allows to deduce from the pointwise estimate (3.38) uniform
control in λ. Using the Borel–Cantelli lemma, one can then infer that,
a.s.,

sup
λ∈γ

∣∣∣∣AvN
j=1

1

xj − λ
− Ex

(
1

λ− x

)∣∣∣∣ ≤ cN− 1
2+δ, ∀N ∈ N . (3.39)

Similar arguments show that, a.s., given M ∈ N , there exists a constant,
cM , such that

sup
M−1≤t≤M

sup
λ∈γ

∣∣∣∣∣AvN
j=1

e−
N−1

N xjt

xj − λ
− Ex

(
e−xjt

λ− xj

)∣∣∣∣∣ ≤ cM N− 1
2 +δ, ∀N ∈ N .

(3.40)
Note that, for each λ ∈ γ, AvN

j=1(xj − λ)−1 is a convex combination of
points of modulus larger or equal than 1/2, contained in a angular sector
with angle non larger than a suitable constant, c < π. In particular,∣∣AvN

j=1(xj − λ)−1
∣∣ ≥ c′ > 0, for all N . From here the assertion of the

proposition follows from Lebesgue’s dominated convergence theorem.

It then remains to analyze the complex integrals in the expression for
Π(t, tw). This again uses Laplace transforms and is rather standard.
I will omit the details. The result, in any case, is the same we have
obtained from the renewal approach.

This concludes the second proof. In itself this may not look easier



22 3 The REM-like trap model

or more instructive, but the added value arises from the fact that many
other results can be obtained in the same way. For details, see the paper
[14].
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3.3 Subordinators

We now come to the last, and maybe most instructive way to prove
Proposition 3.1.6. To do this we give present a slightly different way of
constructing the process XN (t). We begin by describing the trajectories

of our process disregarding time. This will be given by discrete time
Markov chain, Yk, k ∈ N, taking values in {1, . . . , N}. In our case this
is a very trivial process: Y (k) are iid uniform random variables.

Next we construct the clock process SN (k),

SN (k) =
k−1∑

i=0

eiτY (i), (3.41)

where ei are iid exponential r.v.’s with parameter 1. Note that SN(k)

represents the total time the process spends in order to make k steps.
Then X(T ) is simply constructed as

XN (t) = Y (S−1
N (t)), (3.42)

where the right-continuous inverse of an increasing function, φ, is defined
as

φ−1(t) = inf {(u : φ(u) ≥ t} . (3.43)

We are now interested in studying the limit of the clock process as first
N and then k go to infinity. More precisely, we are after a result of the
form

lim
n↑∞

n−1/αSN ([θn]) = Vα(θ), (3.44)

with convergence in the sense of weak convergence for the process (in-
dexed by θ) in s suitable topology. We will see that naturally, the limit
will be identified with an α-stable subordinator.

Stable subordinators. Let us recall some standard terminology and
facts. First, a subordinator is just an non-decreasing process. A Lévy-

process is continuous time stochastic process that

(a) has càdlàg paths,
(b) has independent and stationary increments.

A Lévy process, Vα, is called α-stable, if for any t, s ∈ Rt, Vα(t) and
s−1/aVα(ts) have the same law. Recall the special case α = 2 which is
Brownian motion.

An non-decreasing α-stable Lévy process is called an α-stable subor-
dinator.
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The importance of α-stable Lévy processes is that they are the natural
candidates for limit of sums of independent random variables.

Due to the assumptions of stationarity and independence of the in-
crements, a Lévy process is fully characterized by the one-dimensional
distribution. In the case of the subordinator, the latter is characterized
by its Laplace transform.

Theorem 3.3.14 For each b ∈ R and each measure, ν, on R\{0}, that

satisfies ∫
min(|x|, 1)ν(dx) <∞,

the function

φ(θ) ≡ exp(−ψ(θ)),

where

ψ(θ) ≡ bθ +

∫
(e−(θx) − 1)ν(dx), (3.45)

is the Laplace transform of a Lévy subordinator. Moreover, the Laplace

transform of any Lévy subordinator can be written in this form with

uniquely determined (b, ν). The subordinator is stable with index α ∈
(0, 1), if, for some K ∈ R+,

ν(dx) =
Kα

Γ(1 − α)
x−1−αdx, (3.46)

and hence ψ(θ) = Kθα.

Since we will more or less see an explicit construction in the sequel, I
will not dwell more on generalities about Lévy process.

In any case, if the random variables τY (i), i ∈ N, were all independent,
then SN(k) would be a sum of independent random variables, and we
could simply invoke classic convergence results for iid random variables.
Since the random variables eiτY (i) are positive and in the domain of
attraction of an α-stable law, this would give us immediately that (3.44)
would hold with Vα an α-stable subordinator.

Now of course the random variables τY (i) are not all independent,
since there are only N of them. Thus, a result like (3.44) can only hold
in the limit a N ↑ ∞. Indeed we will show that

Theorem 3.3.15 Let α > 1. Then

lim
n↑∞

n−α lim
N↑∞

SN([θn]) = Vα(θ), (3.47)

in distribution in the Skorokhod J1-topology.
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Proof We will first show that the finite dimensional marginals of n−αSN ([θn])

have the right limits. Let us first consider the set An,N ≡ {Y : ∃0,k<`≤n :

Y (k) = Y (`)}. We clearly have the estimate

P[An,N ] ≤ n2N−1 (3.48)

Thus limN↑∞ SN ([θn]) has the same distribution as

S̃(θn) ≡
[θn]−1∑

i=0

eiτi. (3.49)

We will now study the convergence of S̃(nθ) as n ↑ ∞. In the process we
will construct and study the α-stable subordinator. We shall see that
this is closely linked to extreme value theory and Poisson processes.

Let us start by noting that

nP[eiτi > n1/αc] → Γ(1 − α)c−α. (3.50)

Now, a standard result from extreme value theory states the following
[16]:

Theorem 3.3.16 Assume that Xi are iid random variables that satisfy

lim
n↑∞

P[Xi > un(c)] = ν(c). (3.51)

where ν is an increasing (respectively decreasing) function. Then, the

point process
n−1∑

i=0

δ(i/n,u−1
n (Xi))

(3.52)

converges in distribution to the Poisson point process, R on R+×R with

intensity measure dt× dν(x) (respectively −dν if ν is decreasing).

Applying this theorem to our case gives us that

Corollary 3.3.17 The point process

Rn ≡
n−1∑

i=0

δ(i/n,n−1/αeiτi) → R (3.53)

converges to the Poisson point process on (0, 1]×R+ with intensity mea-

sure dt× Γ(1 − α)c−1−αdc.

We will now prof two facts. First, we will show that form the process
R we can construct an α-stable subordinator. Then we will show that
our process S̃(θn) converges to that process.
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Proposition 3.3.18 Let R be the Poisson process from Theorem 3.3.16

and assume that the measure dν has support on R is such that∫
(x ∧ 1)dν(x) <∞. Then the integral

V (t) ≡
∫ t

0

∫ ∞

0

R(ds, dx)x (3.54)

exists and is an increasing process with independent increments, i.e. a

Lévy subordinator.

Proof Let us decompose V (t) into two pieces, V >(t) and V <(t), where

V >(t) ≡
∫ t

0

∫ ∞

1

R(ds, dx)x, (3.55)

and

V <(t) ≡
∫ t

0

∫ 1

0

R(ds, dx)x. (3.56)

Notice that the two processes, if they exist are independent. Moreover,
the intensity measure of the set [0, t] × [1,∞) is finite by hypothesis.
Thus there are only finitely many points of R on this set, hence V >(t)

is a finite sum and thus almost surely finite. On the other hand, v<(t)

is positive and

EV <(t) = t

∫ 1

0

xdν(x) <∞ (3.57)

also by hypothesis. Thus also V <(t) is almost surely finite and hence
V (t) is almost surely finite and well defined. Since we really should think
of it as the distribution function of the measure

∫
R(·, dx) on R+, is is

also right-continuous. Since it has independent increments, it satisfies all
hypothesis of a Lévy process. Since it is increasing, it is a subordinator.

For later use we note that it is quite simple to compute the Laplace
transform of this process. In fact, Let V (c)(t) be the truncated version

V (c)(t) ≡
∫ t

0

∫ ∞

c

R(ds, dx)x. (3.58)

Set M ≡
∫ t

0

∫∞
c dsdν(x). Then
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Ee−λV (c)(t) =

∞∑

k=0

Mk

k!
e−M

[
t
∫∞

c e−λxdν(x)

M

]k

(3.59)

= e−M exp

(
t

∫ ∞

c

e−λxdν(x)

)

= exp

(
t

∫ ∞

c

(
e−λx − 1

)
dν(x)

)
.

Again by our assumptions on ν, the limit c ↓ 0 exists and yields the
Laplace transform of the Lévy subordinator in the standard form

Ee−λV (t) = exp

(
t

∫ ∞

0

(
e−λx − 1

)
dν(x)

)
. (3.60)

If for dν(x) we take a measureKx−1−αdx, then it α < 1 the integrability
conditions are satisfied and the resulting process is a stable subordinator
(with zero drift). The measure ν is called the Lévy measure. This is all
for the moment we want to know about Lévy subordinators.

Now let us turn to the proof of the fact that our process S̃ converges
to such an object.

Theorem 3.3.19 Let α < 1. Then

lim
n↑∞

n−1/αS̃(θn) = Vα(t), (3.61)

where Vα is the stable subordinator with zero drift and Lévy measure

Γ(1−α)x−1−αdx. Convergence is in distribution on the Skhorohod space

of càdlàgfunctions equipped with the J1-topology.

Proof We could proof this in two ways: either compute the Laplace
transform, or as follows. Set, for fixed c > 0,

n−1/αS̃(θn) = n−1/α

[θn]−1∑

i=0

1Ieiτi>cn1/αeiτi (3.62)

+n−1/α

[θn]−1∑

i=0

1Ieiτi≤cn1/αeiτi

≡ S̃n(θ) ≡ S̃>
n (θ) + S̃<

n (θ)

Now
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ES̃<
n (θ)+ = θn1−1/αα

∫ ∞

0

e−zdz

∫ cn−1/α/z

1

x−αdx (3.63)

=
θα

1 − α

(
c1−α/Γ(α) − n1−1/α

)
∼ θc1−α,

which tends to zero as c ↓ 0. On the other hand, (I) is a function of the
point process Rn:

S̃>
n (θ) =

∫ θ

0

∫ ∞

c

Rn(ds, dx)x. (3.64)

This converges for any positive c, as n ↑ ∞, to
∫ θ

0

∫∞
c

R(ds, dx)x, and
finally, as we have seen, also as c ↓ 0. Since in this limit S̃<

n (θ) tends to
zero, we have proven the assertion.
The advantage of the prove is that it gives the convergence in a strong
topology, the so-called J1-topology. The J1-topology is the topology
given by the J1-metric: for f, g ∈ D

dJ1(f, g) = inf
λ∈Λ

{‖f ◦ λ− g‖∞ ∨ ‖λ− e‖∞}, (3.65)

where Λ is the set of strictly increasing functions mapping [0, T ] onto
itself such that both λ and its inverse are continuous, and e is the identity
map on [0, T ].
We will need a criterion for tightness of probability measures on D. To
this end we define several moduli of continuity,

wf (δ) = sup
{

min
(
|f(t) − f(t1)|, |f(t2) − f(t)|

)
: t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ

}
,

vf (t, δ) = sup
{
|f(t1) − f(t2)| : t1, t2 ∈ [0, T ] ∪ (t− δ, t+ δ)

}
. (3.66)

The following result is a restatement of Theorem 12.12.3 of [17] and
Theorem 15.3 of [9].

Theorem 3.3.20 The sequence of probability measures {Pn} is tight in

the J1-topology if

(i) For each positive ε there exist c such that

Pn[f : ‖f‖∞ > c] ≤ ε, n ≥ 1. (3.67)

(ii) For each ε > 0 and η > 0, there exist a δ, 0 < δ < T , and an

integer n0 such that

Pn[f : wf (δ) ≥ η] ≤ ε, n ≥ n0, (3.68)

and
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Pn[f : vf (0, δ) ≥ η] ≤ ε and Pn[f : vf (T, δ) ≥ η] ≤ ε, n ≥ n0.

(3.69)

Let us check that these criteria are verified in our case. (i) is already
checked. Condition (iii) amounts to checking that there is no jump at 0

and at T . In fact, using that all our processes are increasing,

P

[
vS̃n

(0, δ) > η
]

= P

[
S̃n(δ) > η

]
(3.70)

≤ P

[
S̃<

n (δ) > η/2
]

+ P

[
S̃>

n (δ) > η/2
]

≤ 2ES̃<
n (δ)/η + δnP

[
eiτi > cn−1/α

]

≤ 2δc1−α/η + Γ(1 − α)δc−α.

Clearly, for any η > 0 and ε > 0, the right-hand side of (3.70) can be
made smaller than ε by an appropriate choice of δ and c.

The task to check (ii) is not much harder. We may check this condition
again for S̃<

n and S̃>
n separately. For the former, we need a second

moment estimate,

ES̃<
n (δ)2 ≤ const.δ2c2−α,

and then a standard partitioning argument tells us that

P[wS̃<
n

(δ) > η/2] ≤ P

[
∃k≤T/δ : S̃<

n ((k + 1)δ) − S̃<
n (kδ) ≥ η/2

]

≤ const.Tδc2−α/η. (3.71)

For S̃>
n 0, the event {wS̃<

n
(δ) > η/2} can only occur if two atoms of

Rn have distance smaller than 2δ. The probability of this to happen is
controlled by

Tδn2
P[eiτi > n1/αc]2 ≤ TδΓ(1 − α)2c−2α. (3.72)

Again, both (3.71) and (3.72) can be made smaller than ε by suitable
choice of c and δ, no matter what η is. This proves the theorem.

The main advantage of having convergence in the J1-topology is that
it ensures convergence of the jumps: If the limiting subordinator has a
jump of given size, then the approximants had jumps converging to the
same size, and it cannot be the case that there were many small jumps
of the approximants that merged together to produce that of the limit.
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But the jumps of the clock process SN are closely linked to the corre-
lation function. Indeed, if This implies in particular that XN (s) remains
constant on the interval tw, tw + t, if and only if the clock process jumps
over this interval, i.e. if (tw, tw +t) in not in the range of SN . Combining
these observations, we get the following fact:

Lemma 3.3.21 The correlation function ΠN satisfies

lim
tw↑∞

lim
N↑∞

ΠN (tw, θtw) = P [(1, 1 + θ) 6∈ range(Vα)] . (3.73)

Of course, the probability on the right is well-known (see e.g. the
book by Bertoin [8]) and given by the expression that we already know.



4

From the REM to the REM-like trap model

One of the central questions is of course how simple model that exhibit
aging can be derived from the more realistic models. The first step in
this direction is to see how the REM-like trap model can be understood
as a simplification of its namesake, the “real REM”.

4.1 Dynamics of the REM

Recall that the Random Energy model is defined by a assigning to each
vertex of the hypercube, σ ∈ SM ≡ {−1, 1}N an energy

HN (σ) ≡
√
NXσ, (4.1)

whereXσ, σ ∈ SN , are iid standard Gaussian random variables. Glauber
dynamics of this model is then a continuous time Markov process on SN

whose rates, pN(σ, σ′) are non-vanishing when σ and σ′ differ in at most
one coordinate and that are reversible with respect to the measures
e−βHN(σ). A popular choice for such rates is the so-called Metropolis

algorithm, where

pN (σ, σ′) = exp (−β[HN (σ′) −HN (σ)]+) ,

if σ′ is obtained from σ by “flipping” one spin. We are not able to treat
this choice (yet). Instead, we will consider another choice for transition
rates that is sometimes called random time change dynamics (RTCD).

It will be very convenient for us to define this dynamics as follows.
We denote by YN (k) ∈ SN , k ∈ N, the simple unbiased random walk
(SRW) on SN started at some fixed point of SN , say at {1, . . . , 1}. For
β > 0 we define the clock-process by

SN (k) =

k−1∑

i=0

ei exp
{
β
√
NHN

(
YN (i)

)}
, (4.2)

31
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where {ei, i ∈ N} is a sequence of mean-one i.i.d. exponential random
variables. We denote by Y the σ-algebra generated by the SRW random
variables YN (k), k ∈ N, N ∈ N. The σ-algebra generated by the random
variables ei, i ∈ N will be denoted by E . Then the process

σN (t) ≡ YN (S−1
N (t)) (4.3)

is a continuous time Markov process on SN that is reversible with respect
to the measure µβ,N ; its generator is given by

LN (σ, τ) =





N−1e−β
√

NHN (σ), if dist (σ, τ) = 1,

−e−β
√

NHN (σ), if σ = τ,

0, otherwise;

(4.4)

here dist (·, ·) is the graph distance on the hypercube,

dist (σ, τ) =
1

2

N∑

i=1

|σi − τi| (4.5)

One important point now is that we must choose time-scales when
studying this dynamics. In the trap model we took the limit N ↑ ∞
first and then let time go to infinity. We could also have chosen diag-
onal limits (see [14, 3]), but here this will be quite more relevant and
interesting.

4.2 Random walk on the extremes

The first results on the REM were obtained in two papers [5, 6]. The
idea in these papers was as follows. It is well known (see e.g. [13]) that
the equilibrium measure of the REM at temperatures below the critical
temperature is concentrated on a essentially finite set of individual spin
configurations, whose renormalized energies are well approximated by
a Poisson point process with intensity measure e−EdE. This means in
particular that the process spends eventually all of its time in these
favored configurations. Thus the dynamics of the process at sufficiently
large times should be described by a process on such a set of states,
called the “top”,

TE ≡ {σ ∈ SN : −HN (σ) ≥
√
NuN(−E)}, (4.6)

where

uN (x) ≡
√

2N ln 2 +
x√

2N ln 2
− 1

2

ln(N ln 2) + ln 4π√
2N ln 2

(4.7)
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The natural candidate for this dynamics would then be the REM-like
trap model with N = |TE |. Why? First, the waiting time in a extremal
state of the REM has mean

τ̂i = Cβ,Ne
β/

√
2 ln 2Ei

where Ei are exponential random variables of mean 1. This means that
the rescaled waiting times

τi = τ̂i/C(β,N)

are distributed according to the law αx−1−αdx where α ≡
√

2 ln 2/β.
To complete the picture, one would need to prove two more things:

(i) The process jumps from one state in TE to another with uniform
probability.

(ii) The times between consecutive visits of different states in TE are
asymptotically exponentially distributed.

In [5, 6] these things were proven, using essentially a very elaborate
version of the renewal approach. This was technically very elaborate.
Here we will not go at all into the details, but rather present a new
approach based on the study of the clock process.

4.3 Extremes on the random walk

Following the discussion of subordinators in the REM-like trap model,
we see that there should be way to study aging that is completely or-
thogonal to that of [5, 6]. Instead of studying the process on the extreme
states, we should study the extreme states on the random walk YN ! Once
we adopt this point of view, thing fall nicely into place.

Let us begin with a heuristic explanation of what is going on.
We first fix a scale, K (that later should depend on the volume, N

and the inverse temperature temperature, β. We are interested in the
time the process takes to make a number of steps of order K. Thus, we
consider the trajectory of the radom walk YN of length K.

We are interested in the distribution of the elapsed time along the
trajectory, i.e. the rescaled clock process

SN (sK) ≡
[sK]−1∑

i=0

eie
−βHN (Yi).

Aging should be expected when this time is distributed in a very irregular
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way on the trajectory, notably when after rescaling the clock converges
to a stable subordinator.

Let us now introduce the Gaussian process

ZN (i) ≡ XYN (i), (4.8)

indexed by i ∈ N. Clearly it has the covariance

cov(ZN (i), ZN(j)) = 1IYN (i)=YN (j). (4.9)

Let us first make the naive assumption that the random variables
ZN(i) are an independent family for i = 0, . . . ,K; this were justified if
the random walk was self-avoiding. We will later see that this is not such
a bad assumption if K is not too large. Under this assumption, things
will be quite easy. To simplify matters, take K = 2n. As is well known,
the maximum of K independent standard Gaussian random variables is
of order

√
2 lnK, and the point process

K−1∑

i=0

δu−1
n (ZN (i))

converges (as K ↑ ∞) to a Poisson point process with intensity e−xdx.
Thus the time spent in one of the extreme states is of order

e
√

Nβ
√

2 ln K = eβ
√

Nn
√

2 ln 2.

The question is whether it is this time is bigger or smaller than the time
spent in the remaining states. This is checked as in the trap model: one
splits the sum into two parts, the terms for which ZN (i) ≥ un(−E), and
those which are smaller. Then the mean of the contributions from the
second gives at most

K
1√
2π

∫ un(−E)

−∞
e−z2/2eβ

√
Nz

∼
{
KeNβ2/2, if un(−E) > β

√
N,

eβ
√

Nun(−E), otherwise

In the second case, which corresponds to

β >

√
n

N
2 ln 2 ≡ %, (4.10)

this contribution vanishes compared to that from the extremes, while in
the other case a law of large numbers holds. Let us assume that n is
proportional to N such that % ∈ (0, 1) is fixed.
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Now note finally that

eβ
√

NZN (i) = eβ
√

Nun(u−1
n (ZN (i))) = eβ

√
Nun(0)e

β
% u−1

n (ZN (i)).

Thus, if (4.10) is holds, we should expect that

e−β
√

Nun(0)

s(K−1)∑

i=0

eie
β
√

NZN (i) ∼
s(K−1)∑

i=0

eie
β
% u−1

n (ZN (i)) ∼ Vα(s),

where α ≡ %/β, and Vα an α-stable subordinator.
We see that then only assumption that is not justified in the above

discussion is the independence of the process ZN(i).
To do this, we need some properties of the simple random walk on the

hypercube.

4.3.1 Random walk on the hypercube

We want to show that the simple unbiased random walk on SN started
in some point σ behaves as follows:

(i) The first step takes the walk to a distance 1 from the starting point.
(ii) With probability of order 1 − 1/N , the walk than reaches a distance

N/2 before it returns to the starting point. This takes at least time
N/2.

(iii) From distance N/2, the probability that the walk reaches the starting
point before returning to distance N/2 is 2−N . Thus, the probability
that the walk returns to the origin before L unsuccessful trials (returns
to distance N/2), is smaller than L2−N .

(iv) After time KN2 lnN , the walk is exponentially close to equilibrium,
i.e. for any σ, σ′ ∈ SN

∣∣∣∣
Pσ[YN (k) = σ′ ∪ YN (k + 1) = σ′]

2
− 2−N

∣∣∣∣ < 2−8N . (4.11)

Statements (i) is trivial. Statement (ii) follows form Lemma 8.3 in [12].
Statement (iii) follows from Lemma 8.4 of [12] and reversibility (see also
the proof of that lemma). Statement (iv) is well know and a proof can
be found in [1].

Thus, as long as the T ≤ o(1)×2N , then the probability that the walk
returns ever to a point it has once visited is of order 1/N + o(1).

Let us fix this observation:
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Proposition 4.3.22 Let L ≤ 2aN with a < 1. Let YN be the SRW on

SN , and let

RN (L) ≡ {σ ∈ SN : ∃k ≤ L : YN (k) = σ} (4.12)

denote the range of the random walk of length L. Then

P

[
L(1 −N−1/2) ≤ |RN (L)| ≤ L

]
≥ 1 − cN−1/2. (4.13)

Proof We use the facts stated above. We will characterize the range as
follows as a union of disjoint points:

RN (L) =

L⋃

k=0
Y` 6=Yk,∀`>k

{YN (k)}, (4.14)

i.e. we collect each last visit of a point σ. This gives for the cardinality
(we simplify in the sequel YN (k) ≡ Yk)

|RN (L)| =

L∑

k=0

1I{Y` 6=Yk,∀`>k}. (4.15)

Hence

E|RN (L)| = LP [Y` 6= Yk, ∀` > k] ≥ L(1 − cN−1). (4.16)

Hence the claimed result follows from Chebeychev’s inequality.

Remark 4.3.1 The estimate on the probability in (4.12) can be im-
proved to allow to show that the event considered holds with probabil-
ity one for all but finitely many N . To do this we have to use a second
moment estimate and some de-correlation of the variables 1I{Y` 6=Yk,∀`>k}
and 1I{Y` 6=Yk,∀`>m}, if m − k ≥ N2, say. This follows easily from the
fact that the random walk reaches equilibrium on a time scale of order
N lnN . I leave the details to the reader.

4.3.2 The subordinator on the SRW trajectory

We have now enough information on the SRW trajectories to conclude
that the self-intersections do change the extremal properties of the pro-
cess.

In fact, the argument is simple: We have to show that with probability
tending to one, an iid process on the missing N−1/2L sites will not reach
the level of the maximum over L sites: Clearly,



4.3 Extremes on the random walk 37

P

[
LN−1/2

max
i=1

Xi ≥ uL(E)

]
≤ N−1/2LP [Xi ≥ uL(E)] = N−1/2e−E ↓ 0,

(4.17)
for any E. Thus, we can ignore the exceptional sites, as they do not
contribute to the sum for any value of the truncation parameter E.

This allows us to conclude deduce the following main theorem.

Theorem 4.3.23 Let a < 1 be fixed. Then,

e−β
√

NuaN (0)SN (s2aN ) → Vα(s), (4.18)

in distribution (i.e. the law of the process defined on the Skorokhod space

equipped with the J1-topology converges), for almost all realizations on

the SRW Y . Here α =
√

2a ln 2/β.

As a consequence, one can prove the same convergence result for the
correlation functions as in the REM-like trap model.
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