
1. Introduction of large deviation theory.

In the field of large deviations, people concern about asymptotic computation of

small probabilities on an exponential scale. Since the remarkable works by Donsker-

Varadhan (and others) in seventies and eighties, the field has been developed into a rel-

atively complete system. There have been several “general” tricks that become standard

approaches in dealing with large deviation problems. Perhaps the most useful is Gätner-

Ellis Theorem.

We have no intension to state this theorem in its full generality. Let {Yn} be a

sequence of non-negative random variables and let {bn} be a positive sequence such that

bn −→ ∞. The basic assumption is existence of the limt

Λ(θ) = lim
n→∞

1

bn
log E exp

{

θbnYn

}

θ > 0 (1.1)

Theorem 1.1. (Gätner-Ellis). Under some regularity conditions on the function Λ(·),

lim
n→∞

1

bn
log P{Yn ≥ λ} = Λ∗(λ) λ > 0 (1.2)

where

Λ∗(λ) = sup
θ>0

{

θλ − Λ(θ)
}

If the exponential moment generating function

E exp
{

θbnYn

}

does not exist or, (1.1) is not in the right scale to describe the large deviation behavior of

{Yn}, we assume

Λ(θ) = lim
n→∞

1

bn
log E exp

{

θbnY 1/p
n

}

θ > 0 (1.3)

where p > 0 is fixed.

Replacing Yn by Y
1/p
n in Theorem 1.1, we have

Theorem 1.2. Under some regularity conditions on the function Λ(·),

lim
n→∞

1

bn
log P{Yn ≥ λ} = Λ∗(λp) λ > 0 (1.4)

By Taylor expansion,

E exp
{

θbnY 1/p
n

}

=

∞
∑

m=0

θm

m!
bm
n E Y m/p

n

When establishing (1.3) by “standard” approaches becomes techniquely impossible,

one may attempt to estimate

E Y m/p
n

When p 6= 1, there are some good reasons to feel unpleasent to face sometimes fractional

power m/p.
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Lemm 1.1. The following two statements (1.5) and (1.6) are equivalent:

lim
n→∞

1

bn
log

∞
∑

m=0

θm

m!
bm
n

(

E Y m
n

)1/p

= Ψ(θ) θ > 0 (1.5)

lim
n→∞

1

bn
log E exp

{

θbnY 1/p
n

}

= pΨ
(θ

p

)

θ > 0 (1.6)

Proof. Due to similarity, we only show that (1.5) implies (1.6). Given ε > 0,

1

([p−1m] + 1)!
b[p−1m]+1
n

( (1 + ε)θ

p

)[p−1m]+1[

E Y [p−1m]+1
n

]1/p

≤
∞
∑

m=0

1

m!

( (1 + ε)θ

p

)m

bm
n

(

E Y m
n

)1/p

By Jensen inequality,

E Y m/p
n ≤

[

E Y [p−1m]+1
n

]

p−1m

[p−1m]+1

On the other hand, as

b[p−1m]+1
n

[

E Y [p−1m]+1
n

]1/p

≥ 1

we have
(

bp([p−1m]+1)
n E Y [p−1m]+1

n

)

p−1m

[p−1m]+1

≤ bp([p−1m]+1)
n E Y [p−1m]+1

n

Summerizing what we have,

bm
n E Y m/p

n ≤ bp[p−1m]+1
n E Y [p−1m]+1

n

Consequently,
1

(

([p−1m] + 1)!
)p bm

n

( (1 + ε)θ

p

)p([p−1m]+1)

E Y m/p
n

≤
( ∞

∑

m=0

1

m!

( (1 + ε)θ

p

)m

bm
n

(

E Y m
n

)1/p
)p

By Stirling formula, there are constants C > 0 and δ > 0 such that

θm

m!
bm
n E Y m/p

n ≤ C(1 + δ)−m

( ∞
∑

m=0

1

m!

( (1 + ε)θ

p

)m

bm
n

(

E Y m
n

)1/p
)p

Thus,

E exp
{

θbnY 1/p
n

}

≤ C
1 + δ

δ

( ∞
∑

m=0

1

m!

( (1 + ε)θ

p

)m

bm
n

(

E Y m
n

)1/p
)p
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Consequently,

lim sup
n→∞

1

bn
log E exp

{

θbnY 1/p
n

}

≤ pΨ
( (1 + ε)θ

p

)

Letting ε → 0+ on the right gives

lim sup
n→∞

1

bn
log E exp

{

θbnY 1/p
n

}

≤ pΨ
(θ

p

)

On the other hand,

E exp
{

θbnY 1/p
n

}

≥ θpm

(pm)!
bpm
n E Y m

n

By Stirling formula again, for any 0 < δ < ε, there is C > 0 such that

C(1 + δ)−m

(

E exp
{

θbnY 1/p
n

}

)1/p

≥ 1

m!

( θ

(1 + ε)p

)m

bm
n

(

E Y m
n

)1/p

for all m ≥ 0. Thus

C
1 + δ

δ

(

E exp
{

θbnY 1/p
n

}

)1/p

≥
∞
∑

m=0

1

m!

( θ

(1 + ε)p

)m

bm
(

E Y m
n

)1/p

By (1.5),

lim inf
n→∞

1

bn
log E exp

{

θbnY 1/p
n

}

≥ pΨ
( θ

(1 + ε)p

)

θ > 0

Letting ε → 0+ on the right,

lim inf
n→∞

1

bn
log E exp

{

θbnY 1/p
n

}

≥ pΨ
(θ

p

)

θ > 0

By Lemma 1.1 and Theorem 1.3, immediately we obtain

Theorem 1.4. Under (1.5) and some regularity condition on Ψ(·),

lim
n→∞

1

bn
log P

{

Yn ≥ λ
}

= −I(λ) (λ > 0) (1.7)

where

I(λ) = p sup
θ>0

{

λ1/p − Ψ(θ)
}

We now apply Theorem 4 to a more special case. Let Y ≥ 0 be a random variable

such that

lim
m→∞

1

m
log

1

(m!)γ
E Y m = −κ (1.8)

for some γ > 0 and κ ∈ R.
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Theorem 1.5 (König and Morters (2002)). Under (1.8)

lim
t→∞

t−1/γ log P{Y ≥ t} = −γeκ/γ . (1.9)

Proof. We only need to check the condition (1.5) with Yt = Y/t, bt = t1/γ and p = 2γ.

Indeed, for any θ > 0,

lim
t→∞

1

t1/γ
log

∞
∑

m=0

θm

m!
tm/(2γ)

(

E Y m
)

1
2γ

= lim
t→∞

1

t1/γ
log

∞
∑

m=0

θm

m!
tm/(2γ)

(

(m!)γe−κm
)

1
2γ

= lim
t→∞

1

t1/γ
log

∞
∑

m=0

1√
m!

(

θt
1
2γ e−

κ
2γ

)m

= lim
t→∞

1

t1/γ
log

∞
∑

m=0

1√
2m!

(

θt
1
2γ e−

κ
2γ

)2m

= lim
t→∞

1

t1/γ
log

∞
∑

m=0

1

2mm!

(

θt
1
2γ e−

κ
2γ

)2m

=
1

2
θ2e−κ/γ

Hence,

I(λ) = 2γ sup
θ>0

{

θλ
1
2γ − 1

2
θ2e−κ/γ

}

= λ
1
2γ γeκ/γ

2. Large deviation for Brownian intersection local times.

Recall a d-dimensional Brownian motion W (t) is a stochastic process in R
d with

the following properties:

(1). For any s < t, the increment W (t)−W (s) is independent of the history (up to

the time s)
{

W (u); u ≤ s
}

(2). For any t > 0, W (t) is a normal random variable with mean 0 and covariance

matrix tId (where I is the d × d identity matrix).

By convention, we usaully assume that W (0) = 0. When the fact that W (t) is a

Markov process is emphasized, however, we may allow W (t) to start at any point x ∈ R

(i.e., W (0) = x).
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Let W1(t), · · · , Wp(t) be independent d-dimensional Brownian motions. If we allow

Wj(·) ran up to time tj (j = 1, · · · , p), a natural question is to ask how much time is spent

for the p independent trajectories W1(t), · · · , Wp(t) to intersect. In other words, we are

interested in the time set
{

(s1, · · · , sp) ∈ [0, t1] × · · · × [0, tp]; W1(s1) ≈ · · · ≈ Wp(sp)
}

If properly defined, the Lebesgue measure of this et is called the intersection local time of

W1(t), · · · , Wp(t) and is denoted by α
(

[0, t1] × · · · × [0, tp]
)

.

Theorem 2.1. (Dvoretzky-Erdös-Kakutani (1950, 1954))

W1(0,∞) ∩ · · · ∩ Wp(0,∞) 6= φ

if and only if p(d − 2) < d.

In the rest of this section, we assume p(d − 2) < d.

There are two equivalent ways to construct Brownian intersection local time in

the multi-dimensional case. The first approach (Geman, Horowitz and Rosen (1984))

corresponds to the notation

α
(

[0, t1] × · · · × [0, tp]
)

=

∫ t1

0

· · ·
∫ tp

0

δ0

(

W1(s1) − W2(s2)
)

· · · δ0

(

Wp−1(sp−1) − Wp(sp)
)

ds1 · · ·dsp

(2.1)

Geman, Horowitz and Rosen (1984) prove that p(d−2) < d, the occupation measure

on R
d(p−1) given by

µA(B) =

∫

A

1B

(

W1(s1) − W2(s2), · · · , Wp−1(sp−1) − Wp(sp)
)

ds1 · · ·dsp B ⊂ R
d(p−1)

is absolutely continuous, with probability 1, with respect to Lebesgue measure on R
d(p−1)

for any Borel set A ⊂ (Rp)+ (in particular, for A = [0, t1] × · · · × [0, tp]) and, the density

α(x, A) of such measure can be chosen so that the function

(x, t1, · · · , tp) 7−→ α
(

x, [0, t1] × · · · × [0, tp]
)

x ∈ R
d(p−1) (t1, · · · , tp) ∈ (Rp)+

is jointly continuous. The random measure α(·) on (Rp)+ is defined as

α(A) = α(0, A) ∀ Borel set A ⊂ (Rp)+.

Another approach (Le Gall (1990)) constitutes the notation

α
(

[0, t1] × · · · × [0, tp]
)

=

∫

Rd

[ p
∏

j=1

∫ tj

0

δx

(

W (s)
)

ds

]

dx (2.2)
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Let f(x) be a nice probability density function on Rd. Given ε > 0, write fε(x) =

ε−df(ε−1x) and define

αε

(

[0, t1] × · · · × [0, tp]
)

=

∫

Rd

[ p
∏

j=1

∫ tj

0

fε

(

W (s) − x
)

ds

]

dx

Under p(d− 2) < d, Le Gall (1990) shows that there is a random variable α
(

[0, t1]× · · · ×
[0, tp]

)

such that

lim
ε→0+

αε

(

[0, t1] × · · · × [0, tp]
)

= α
(

[0, t1] × · · · × [0, tp]
)

holds in Lm-norm for any m ≥ 1 and for any t1, · · · , tp > 0.

In the special case d = 1, let L1(t, x), · · · , Lp(t, x) be the local times of W1, · · · , Wp,

respectively. By the second construction, one can see that

α
(

[0, t1] × · · · × [0, tp]
)

=

∫ ∞

−∞

p
∏

j=1

Lj(tj, x)dx

By the scaling property of Brownian motions

α
(

[0, t]p
) d

= t
2p−d(p−1)

2 α
(

[0, 1]p
)

. (2.3)

Our main theorem in this section is the following

Theorem 2.2. Under p(d − 2) < d,

lim
t→∞

t−
2

d(p−1) log P

{

α
(

[0, 1]p
)

≥ t
}

= −p

2
κ(d, p)−

4p

d(p−1) (2.4)

where κ(d, p) is the best constant of the Gagliardo-Nirenberg inequality

|f |2p ≤ C||∇f ||
d(p−1)

2p

2 ||f ||1−
d(p−1)

2p

2 f ∈ W 1,2(Rd)

Remark. We point out some facts about κ(d, p) which will be used later. Let

F =

{

f ∈ W 1,2(Rd);

∫

Rd

|f(x)|2 = 1

}

Then

sup
f∈F

{(
∫

Rd

|f(x)|2pdx

)1/p

− 1

2

∫

Rd

|∇f |2dx

}

=
2p − d(p − 1)

2p

(d(p − 1)

p

)

d(p−1)
2p−d(p−1)

κ(d, p)
4p

2p−d(p−1)

(2.5)
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The second fact is that

ρ =
(2p − d(p − 1)

2p

)

2p−d(p−1)
2p

(d(p − 1)

p

)

d(p−1)
2p

κ(d, p)2 (2.6)

where

ρ = sup
f

∫∫

Rd×Rd

G(x − y)f(x)f(y) (2.7)

where the supremum is taken for all f on R
d satisfying

∫

Rd

|f(x)|
2p

2p−1 dx = 1

and where

G(x) =

∫ ∞

0

e−t 1

(2πt)d/2
exp

{

− |x|2
2t

}

dt x ∈ R
d

We now discuss the proof our theorem. By Theorem 1.5 and by the relation (2.6)

between κ(d, p) and ρ, we need only to establish

lim
m→∞

1

m
log(m!)−

d(p−1)
2 E

[

α
(

[0, 1]p
)m

]

= p log ρ +
2p − d(p − 1)

2
log

2p

2p − d(p − 1)

(2.8)

To calculate the moment of α
(

[0, 1]p
)

, notice that by (2.2) for any t1, · · · , tp > 0,

E

[

α
(

[0, t1] × · · · × [0, tp]
)m

]

= E

[
∫

(Rd)m

dx1 · · ·dxm

p
∏

j=1

∫

[0,tj ]m
ds1 · · ·dsm

m
∏

k=1

δxk

(

Wj(sk)
)

]

=

∫

(Rd)m

dx1 · · ·dxm

p
∏

j=1

∫

[0,tj ]m
ds1 · · ·dsmE

m
∏

k=1

δxk

(

W (sk)
)

Let Σm be the permutation group on {1, · · · , m}. By time rearrangement,

∫

[0,tj ]m
ds1 · · ·dsmE

m
∏

k=1

δxk

(

W (sk)
)

=
∑

σ∈Σm

∫

{0≤s1≤···,≤sm≤tj}

ds1 · · ·dsmE

m
∏

k=1

δxσ(k)

(

W (sk)
)

=
∑

σ∈Σm

∫

{0≤s1≤···,≤sm≤tj}

ds1 · · ·dsmE

m
∏

k=1

δxσ(k)−xσ(k−1)

(

W (sk) − W (sk−1)
)

=
∑

σ∈Σm

∫

{0≤s1≤···,≤sm≤tj}

ds1 · · ·dsm

m
∏

k=1

psk−sk−1
(xσ(k) − xσ(k−1))
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where

pt(x) =
1

(2πt)d/2
exp

{

− |x|2
2t

}

dt x ∈ R
d

is the density function of W (t) and, we follow the convention s0 = 0, xσ(0) = 0.

Therefore,

E

[

α
(

[0, t1] × · · · × [0, tp]
)m

]

=

∫

(Rd)m

dx1 · · ·dxm

p
∏

j=1

∑

σ∈Σm

∫

{0≤s1≤···,≤sm≤tj}

ds1 · · ·dsm

×
m
∏

k=1

psk−sk−1
(xσ(k) − xσ(k−1))

(2.9)

Let τ1, · · · , τp be independnet exponential times with parameter 1. We assume

the independence between {τ1, · · · , τp} and {W1(·), · · · , Wp(·)}. Replacing t1, · · · , tp by

τ1, · · · , τp gives

E

[

α
(

[0, τ1] × · · · × [0, τp]
)m

]

=

∫

(Rd)m

dx1 · · ·dxm

[

∑

σ∈Σm

∫ ∞

0

dte−t

∫

{0≤s1≤···,≤sm≤t}

× ds1 · · ·dsm

m
∏

k=1

psk−sk−1
(xσ(k) − xσ(k−1))

]p

=

∫

(Rd)m

dx1 · · ·dxm

[

∑

σ∈Σm

m
∏

k=1

∫ ∞

0

e−tpt(xσ(k) − xσ(k−1))dt

]p

=

∫

(Rd)m

dx1 · · ·dxm

[

∑

σ∈Σm

m
∏

k=1

G(xσ(k) − xσ(k−1))

]p

(2.10)

where the second step follows from the identity

∫ ∞

0

dte−t

∫

{0≤s1≤···,≤sm≤t}

ds1 · · ·dsm

m
∏

k=1

ϕk(sk − sk−1)

=

m
∏

k=1

∫ ∞

0

e−tϕk(t)dt

(2.11)

In the next section, we shall establish that

lim
m→∞

1

m
log

∫

(Rd)m

dx1 · · ·dxm

[

1

m!

∑

σ∈Σm

m
∏

k=1

G(xσ(k) − xσ(k−1))

]p

= p log ρ (2.12)
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Or

lim
m→∞

1

m
log

1

(m!)p
E

[

α
(

[0, τ1] × · · · × [0, τp]
)m

]

= p log ρ (2.13)

We now prove the upper bound of (2.8). First notice that τmin = min{τ1, · · · , τp} is

exponential with parameter p. By (2.2),

E

[

α
(

[0, τ1] × · · · × [0, τp]
)m

]

≥ E

[

α
(

[0, τmin]
p
)m

]

= E τ
2p−d(p−1)

2 m
min E

[

α
(

[0, 1]p
)m

]

= p−
2p−d(p−1)

2 m−1Γ
(

1 +
2p − d(p − 1)

2
m

)

E α
(

[0, 1]p
)m

.

Thus

E α
(

[0, 1]p
)m ≤ p

2p−d(p−1)
2 m+1Γ

(

1 +
2p − d(p − 1)

2
m

)−1

E

[

α
(

[0, τ1] × · · · × [0, τp]
)m

]

By Stirling formula and (2.13),

lim sup
m→∞

1

m
log(m!)−

d(p−1)
2 E

[

α
(

[0, 1]p
)m

]

≤ p log ρ +
2p − d(p − 1)

2
log

2p

2p − d(p − 1)

(2.14)

We now prove the lower bound of (2.8). Let t1, · · · , tp > 0. By (2.9)

E

[

α
(

[0, t1] × · · · × [0, tp]
)m

]

≤
p

∏

j=1

{
∫

(Rd)m

dx1 · · ·dxm

[

∑

σ∈Σm

∫

{0≤s1≤···,≤sm≤tj}

ds1 · · ·dsm

×
m
∏

k=1

psk−sk−1
(xσ(k) − xσ(k−1))

]p}1/p

=

p
∏

j=1

(

E

[

α
(

[0, tj]
p
)m

]

)1/p
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So we have

E

[

α
(

[0, τ1] × · · · × [0, τp]
)m

]

=

∫ ∞

0

· · ·
∫ ∞

0

dt1 · · ·dtp exp
{

−
p

∑

j=1

tj

}

E

[

α
(

[0, t1] × · · · × [0, tp]
)m

]

≤
∫ ∞

0

· · ·
∫ ∞

0

dt1 · · ·dtp exp
{

−
p

∑

j=1

tj

}

p
∏

j=1

(

E

[

α
(

[0, tj]
p
)m

]

)1/p

=

{
∫ ∞

0

e−t

(

E

[

α
(

[0, t]p
)m

]

)1/p

dt

}p

= E

[

α
(

[0, 1]p
)m

]

{
∫ ∞

0

t
2p−d(p−1)

2p
me−tdt

}p

= E

[

α
(

[0, 1]p
)m

][

Γ
(2p − d(p − 1)

2p
m + 1

)]p

where the fourth step follows from (2.2). Consequently,

E

[

α
(

[0, 1]p
)m

]

≥
[

Γ
(2p − d(p − 1)

2p
m + 1

)]−p

E

[

α
(

[0, τ1] × · · · × [0, τp]
)m

]

By Stirling formula and (2.13),

lim inf
m→∞

1

m
log(m!)−

d(p−1)
2 E

[

α
(

[0, 1]p
)m

]

≥ p log ρ +
2p − d(p − 1)

2
log

2p

2p − d(p − 1)

(2.15)

Finally, (2.8) follows from (2.14) and (2.15).

10


