1. Introduction of large deviation theory.

In the field of large deviations, people concern about asymptotic computation of
small probabilities on an exponential scale. Since the remarkable works by Donsker-
Varadhan (and others) in seventies and eighties, the field has been developed into a rel-
atively complete system. There have been several “general” tricks that become standard
approaches in dealing with large deviation problems. Perhaps the most useful is Gatner-
Ellis Theorem.

We have no intension to state this theorem in its full generality. Let {Y,,} be a
sequence of non-negative random variables and let {b,,} be a positive sequence such that
b, — 00. The basic assumption is existence of the limt

1
A(6) = lim ——logE exp {anYn} >0 (1.1)
Theorem 1.1. (Gétner-Ellis). Under some regularity conditions on the function A(-),
1
lim o logP{Y,, > A} =A"(A) A>0 (1.2)

where

A*(X) = sup {9)\ . A(O)}

6>0
If the exponential moment generating function

E exp {anYn}

does not exist or, (1.1) is not in the right scale to describe the large deviation behavior of

{Y,.}, we assume
1
A(f) = lim — logE exp {anYnl/p} >0 (1.3)

n— 00 bn

where p > 0 is fixed.
Replacing Y,, by Y /P in Theorem 1.1, we have

Theorem 1.2. Under some regularity conditions on the function A(-),
1

7 logP{Y, > A} =A"(\’) A>0 (1.4)

lim
n—oo
By Taylor expansion,

> m
E exp {anY,}/p} = > WEY
m=0 ’
When establishing (1.3) by “standard” approaches becomes techniquely impossible,
one may attempt to estimate
EY™/P
When p # 1, there are some good reasons to feel unpleasent to face sometimes fractional

power m/p.



Lemm 1.1. The following two statements (1.5) and (1.6) are equivalent:

[e%9) om 1/
Tim % logmz::() b (EY,T) "w) >0 (1.5)
Tim % log E exp {anYnl/p} - pw<g) >0 (1.6)

Proof. Due to similarity, we only show that (1.5) implies (1.6). Given € > 0,

1 -1 (1+€)fy P~ 'ml+1 -1 1/p
= plmml (2T 7 Eylp” ml+1
(p~tm] + 1)1 " ( P ) [ " }

- ;%Cl ;€)9>mb?<EYf)l/p

By Jensen inequality,

_1m

EY™/P < [E Y[p‘lmHl] [p=Tml+1
On the other hand, as
/P
>

n

b[pflm]—f—]. [E Yrgpflm]+1i| 1

we have .

(bg([p_lm]H)E yn[p_lmHl) =t < ppp ' mr gyl ml+1

Summerizing what we have,

1

b'E ern/p < bﬁ[p_IM]JrlE yip_ m]41

Consequently,

Ey:”b/p

1 bm<(1 —}-6)0)17([P_1m]+1)
(p~tml+1H)" "\ p
o m 1/p\ P
(£ Ay
= m)! P
By Stirling formula, there are constants C' > 0 and § > 0 such that

%bﬁEYW” “cus 5)_m( i % ((1 ;e)e)mb? <IE Y,;ﬂ)l/p)p
! 0o

Thus,

B exp {0,777} < 01%5( 3 L(Ax9hymn g Y;ﬂ)up)p



Consequently,

lim sup bi log E exp {anYnl/P} < p\If<(1 + 6)«9)

n—oo n p

Letting € — 0" on the right gives

lim sup bi log E exp {anYnl/p} < p\If<€>

n—oo n p

On the other hand,
oprm
E exp {anYnl/p} > 7 _ppmEym™
(pm)!
By Stirling formula again, for any 0 < § < €, there is C' > 0 such that

C(1+6)~™ (E exp {anYnl/P}) w > — <(1 fﬁ)p>mbzﬂ (E Yﬁ) e

for all m > 0. Thus

01%‘5 (E exp {anYnl/P}) v > i %(u fe)p)mbm (Ey,;n)”p

By (1.5),
0

(I+e€)p

lim inf bi logE exp {anYnl/p} > p\lf<

) 0>0
Letting € — 0% on the right,
1 0
lim inf — log E exp {anYnl/p} > p\If<—) 0>0

ne by P

By Lemma 1.1 and Theorem 1.3, immediately we obtain

Theorem 1.4. Under (1.5) and some regularity condition on ¥(-),

1
lim ™ logP{Y,, > A} =—I(\) (A>0)

n—oo n

where

1) =psup {)\1/1’ - xp(@)}

(1.7)

We now apply Theorem 4 to a more special case. Let Y > 0 be a random variable

such that
EY™ = —k

. 1 1
lim — log
m—oo M (m!)Y

for some v > 0 and k € R.

(1.8)



Theorem 1.5 (Ko6nig and Morters (2002)). Under (1.8)

1tlim t7Y 7 log P{Y > t} = —e"/7. (1.9)

Proof. We only need to check the condition (1.5) with Y; = Y/t, by = t'/7 and p = 2v.
Indeed, for any 6 > 0,

1
lim log Z tm/(27 <IE Ym) -

t—o0 tl/
= lim L log Z H—tm/(27) <(m')76_”m) o
t— 00 tl/’Y —O ’

- g s 3 L ()

1 o 2m
(9% e*ﬂ)

:tlir?omlogz_:o\/g—m

, 1 = 1 1 e\2m
=l 8 3 g (055
m=

Hence,

1
I(\) = 2vysup {QA% - —92e—ﬁ/v} _ ABAer/
>0 2

2. Large deviation for Brownian intersection local times.

Recall a d-dimensional Brownian motion W (t) is a stochastic process in R? with

the following properties:

(1). For any s < t, the increment W (t) — W (s) is independent of the history (up to
the time s)

{W(u), u < s}

(2). For any ¢ > 0, W(¢) is a normal random variable with mean 0 and covariance
matrix tI; (where I is the d x d identity matrix).

By convention, we usaully assume that W(0) = 0. When the fact that W(t) is a
Markov process is emphasized, however, we may allow W (¢) to start at any point x € R
(i.e., W(0) = z).



Let Wy(t),---, Wp(t) be independent d-dimensional Brownian motions. If we allow
W;(-) ran up to time t; (j =1,---,p), a natural question is to ask how much time is spent
for the p independent trajectories Wi(t),---, Wp(t) to intersect. In other words, we are
interested in the time set

{61 ) e0n]xx 0] Wals) m -~ Wylsy) |

If properly defined, the Lebesgue measure of this et is called the intersection local time of
Wi(t), -, Wp(t) and is denoted by a([0,¢1] x - -+ x [0,2,]).

Theorem 2.1. (Dvoretzky-Erdos-Kakutani (1950, 1954))
W1(0,00) N ---NWp(0,00) # ¢
if and only if p(d — 2) < d.
In the rest of this section, we assume p(d — 2) < d.

There are two equivalent ways to construct Brownian intersection local time in
the multi-dimensional case. The first approach (Geman, Horowitz and Rosen (1984))
corresponds to the notation

([0, 1] x -+ x [0,,])

t1 tp (2.1)
= [ [ W) = Walsa)) 80 (W (5p0) = Wisy)) o -+,

Geman, Horowitz and Rosen (1984) prove that p(d—2) < d, the occupation measure
on R¥P=1 given by

1ia(B) :/ 15 (Wi(s1) — Wa(s2), -, Wy1(sp_1) — W(sp))dss - -ds, B C RI®D
A

is absolutely continuous, with probability 1, with respect to Lebesgue measure on R*®—1)
for any Borel set A C (RP)" (in particular, for A = [0,#1] x --- x [0,%,]) and, the density
a(z, A) of such measure can be chosen so that the function

(b1, tp) — ([0, 1] x - x [0,8,]) @€ RIPTD (4. 1)) € (RP)T
is jointly continuous. The random measure «(-) on (RP)* is defined as
a(A) = a(0,A) V Borel set A C (RP)T.

Another approach (Le Gall (1990)) constitutes the notation

a([0,t1] x -+ x [0, /R {H/ }daz (2.2)

7j=1



Let f(z) be a nice probability density function on R%. Given € > 0, write f.(z) =
e~ 4f(e1z) and define

ac([0,11] x - x [0,1,]) :/Rd {]i]l/ot £.(W(s) — 2)ds| da

Under p(d —2) < d, Le Gall (1990) shows that there is a random variable a([O, ty] X - X
[0,¢,]) such that

lm o ([0, 61] x -+ % [0,2,]) = ([0, 1] X -+ x [0,,])

e—0t
holds in L™-norm for any m > 1 and for any tq,---,t, > 0.

In the special case d = 1, let Ly (t,z), - -, Ly(t, ) be the local times of W7y, ---, W,
respectively. By the second construction, one can see that

a([O,tl] X - X [Oﬂfp]) = /_OO HLJ(tJ,.I‘)d.T

By the scaling property of Brownian motions

2p—d(p—1)

a([0,47) £ 7= a([0, 1]7). (2.3)

Our main theorem in this section is the following

Theorem 2.2. Under p(d —2) < d,

lim ¢~ a0 logIP’{a([O, 17) > t} = —g/ﬁ(d,p)_dé:) (2.4)

t—o00
where r(d, p) is the best constant of the Gagliardo-Nirenberg inequality

d(p—1) 1_dp=1)

[flop SCIVAL ™ Il ™ feWH(RY

Remark. We point out some facts about x(d, p) which will be used later. Let

F={rew@y [ ir@pP-1f

1/p 1
2p . 2
(L) =3 [ o)

d(p—1)
_ 2p — cé(p —1) <d(p — 1)) 2p—d(p—1) n(d,p)ﬁ&—”
p p

Then

(2.5)




The second fact is that

- (A Dy o= 1)y T
p=",
P

where

)= sup / / L Gy f@))

f

where the supremum is taken for all f on R? satisfying

/ (@) de = 1
Rd

and where

> 1 |z|?
t d
G(x) = /0 e 7(2 UE exp{ ~ o }dt reR

We now discuss the proof our theorem. By Theorem 1.5 and by the relation (2.6)

between k(d, p) and p, we need only to establish

. 1 _d(p—1) m
W}Eréoalog(m!) = E [a([O, 1]7) ]
2p—d(p—1) 2p

=nl |

(2.8)

To calculate the moment of a([O, 1]”), notice that by (2.2) for any ¢1,---,¢, > 0,

E[a([0,ta] x - x [0,2,])"]

p m
:E{/ dxy -+ -dr, / dsy---dsy, Oz, (W (sk) }
(Ri)m J:Hl 0,8, kl;[l <(Wila)
p m
= dxq -+ -dx, / dsy---ds,E Oz (W (sk)
/(Rd)m ]1;[1 [0,25]™ H +{ )

k=1

Let X,,, be the permutation group on {1,---,m}. By time rearrangement,

/ dsy - -ds,,E H Oz, (W(Sk))
[O7tj]m k=1

— Z /{OSSlS d81 . dSmE H 5$o—(k) (W(Sk))

o <sm <t;} bt

B Z /{O<sl< d$1 a 'dSmE H 5$a(k)*xg(kf1) (W(Sk) - W(Skz—l))

o, Ssm <t} k1

= Z / dS]_ T 'dsm H psk—sk_l(xcr(k:) - aja’(kfl))

cexn,, J{0<s1<, <sm <t} k=1
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where

1 ElR d

is the density function of W (t) and, we follow the convention sg = 0, z5() = 0.

pi(z) =

Therefore,

E |a([0,t2] x -+ x [0,4,])"]

p
z/(Rd)mdarl---dme Z / dsy - -dsm, (2.9)

j=1c0ex,, /{0<s1<, <sm <t;}

Let 71, --,7, be independnet exponential times with parameter 1. We assume
the independence between {r,---,7,} and {Wi(-),---,W,(-)}. Replacing t1,---,t, by
Ty, , Tp glves

E [a([O,ﬂ] X oo X [Oan])m]

= dry - -dxr, [ / dtet/
/(Rd>m 2 0 {0<s1 < <sm<t}

OCEYX M

m p
X dsy -+ -dsm H pskfskfl('ro(k) — .fg(k_l))}

P (2.10)
m e8] p
= / dxy-- ~d$m[ Z H / e pe(To) — %(k—n)dt}
(RE)™ €S, k=170
m p
= [ dordnn| 3 TT GGoay = a0
(Rd)m €S, k=1
where the second step follows from the identity
/ dte™ / dsy -+ dsm [ or(sx — 551)
0 {0<s1 <, <5 <t} k=1
(2.11)

= H/O e top(t)dt
k=1

In the next section, we shall establish that

1 1 s b
lim — log/ dxy---dzy, [— G(Tor) — Tok—1))| =plogp (2.12)
m—0o0 1M (Rd)m m‘ aezE:m k]:;[
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Or

Tr}ijnw p. log WE |:Oé([0,7'1] X - X [O,Tp])mi| =plogp (2.13)
We now prove the upper bound of (2.8). First notice that 7, = min{m,---,7,} is

exponential with parameter p. By (2.2),

E [a([O,ﬁ] X e X [Ova])m}

>E [a([O,Tmm] ) } ETM

2p—d(p—1)

_edpen) 2p —d(p—1) m
=p 2 1F<1 + #m)Ea([O, 1]p>
Thus

Ea([(), 1]p)m < p%(l’*l)m-i-lr(l + wm)lﬂg [a([(),ﬁ] X oo X [07Tp])m]

By Stirling formula and (2.13),

1 p— m
lim sup - log(m!)_d( —E [a([(), 1]7) }
e 2.14
<plogp+ 2p—dp—1) log 2p ( )
= Posp 2 2p—d(p— 1)

We now prove the lower bound of (2.8). Let ¢1,---,¢, > 0. By (2.9)

E [a([O,tl] X [0,8,))"

p
< dxy, { / dsy - -dsm,
1;[ {/Mm gezzm {0<s1 <, Ssm <t}
py1/p
Psp—sp_1 xo‘(k:) — Lo(k— 1)>:| }

( [ ) Dl/p

I/\

1j



So we have

< /Ooo /OOO dty dtpexp{ _ étj} ljl (E [a([O,tJ]p)le/p

where the fourth step follows from (2.2). Consequently,

E [a([(), 1]p)m] > [F(%f—l)m—k 1)]71)1@ [a([O,Tl] X oo X [077-]0])7"}

By Stirling formula and (2.13),

lim inf E log(m!)™ g [a([(), 1]7) m]

m—oo M,

2.15
> plogp+ 2p—dlp—1) log 2 | )
= PoRp 2 2p —d(p— 1)
Finally, (2.8) follows from (2.14) and (2.15). 0
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