3. High moment asymptotics.
One of the goals in this section is to establish

p

.1 1 i
lim — log/(Rd)m dzry - -dx, [% Z H G(ﬂcg(k) —%(k_n) =plogp (3.1)

m—oo 1M !
oceEX,, k=1

where

pzﬁﬁ/@wwG@—yﬁ@N@MMy

where the supremum is taken for all f on R? satisfying

/ (@) de = 1
Rd

and where

> 1 |z|?
t d
G(z) = /0 e 7(2 UE exp{ v }dt reR

A more general problem is to investigate the limit behaviors of the integral
1 = b
/m mw(dxy) - w(dxy,) {% Z H K(xg(k—l)axa(k))}
ocEX,, k=1

where ) = o is a fixed point in 2. The idea was first introduced by Mérters and Konig
(2002). The argument we present here simplifies their original proof. The study in this
direction might hold key to the solutions of several hard problems in the large deviations.
Here we give a lower bound result.

Theorem 3.1. Let p > 1 be a constant, let (2, A, ) be a meassure space and let K:
QxQ — RT be a measurable, non-negative function satisfying the following assumptions:

(1). Symmetry: K(z,y) = K(y,x) for any z,y € Q.

(2). Irreducibility: For any z € Q,

W({y € G(z,y) = 0}) =0

(3). Double integrablity: For any f € E%(Q, A, ),

/ K (2,y) f(2)  (y)m(d)m(dy) < oo
(9529
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Then

| 1 s i
l,lnrri}o%f p log/m m(dxy) -+ w(dxy,) [ﬁ Z H To(k—1)s To(k))
€Xm k=1 (3.2)
> plogsup [ K(a.) (@) w)m(an)a(ay)
QxQ
where the supremum is taken over all functions f on () satisfying
[ 1s@IF (i) =1 (33)
Q

Proof. Given e > 0, write Q. = {y € Q; K(zo,y) > €}, Ac = ANQ. and 7.(-) = 7(-NQ,).
For any function h on . with inf,cq h(x) > 0 and

/Q () =

we have

{/Qm (dzy) - - - 7(dnm) {% Ue%: ]ﬁK(%(kl),%(m)r}”P
Z/mw(dml)...w(dxm)<ﬁh % Z HK To(eo1) To (k)
GES k=1

(2 )
w(dz1) - -ﬂ(dxm)< ﬁ h(a:k)> ﬁ K (zp_1,73)

e
I
—

I
—
3
o
I
R

k=1
> E;Ielgz h(x)/ mw(dxy) - w(dxy,) H Vh(@r-1)K(To-1), Zom) vV M (2k)
¢ k=2

Define the linear operator T: £2(Q, Ac, ) — L2(Qe, Ac, ) as
=/Q V@)K (z,9)Vh(y)g(y)m(dy) g€ L2(Qe, Ac, )

One can see that T is self-adjoint: (g1, Tge) = (T'g1,go) for any gi1,g2 € L2(Qe, Ae, e).
Let g € £L?(Q., A, 7.) such that SUp,cq, 9(7) < oo and

/Q () =

2



Then we have

{ / w(dr) - n(da) [mi
_e(infh( ) sup g(z )

Sy €N,

x <I£[2\/h(a:k_1)K(a:k_1,a:k) h(a:k))g(xm)

= (ng (@) (s 9()) (0T g)

rEQ,

m pN 1/P
H U(k 1) O’(k)):| }

m(dzy) - w(dam)g(xq)

%]
e

Consider the spectrul representation

(9, Tg) = / N Ag(dX)

— 00

where (14 is a probability measure on R. By Jensen inequality,

— 00

Summarizing what we have,

1 1 i p
lim inf — lo w(dxy) - -m(dry,) | — (To(k—1)s To(k))
mﬁoomg/m ! {m%:l;[ (k=1) (k)}
> plog(g, Tg) =plog/Q . K(x,y)\/h(z)g(x)\/My)g(y)m(dx)n(dy)

Given a function f on 2, with

0 < inf f(z) < sup f(z) < o0

z€Q TEN,
and
| 1@ =1
if we take h = f2r—T e and g = f2P T then f(x) = +/h(z)g(x). Consequently,

| 1 s ’
lim inf — log/m mw(dxy) - mw(day,) [% UEXE: kl;[l K(Zo(k-1), To(k))

> plog /Q () @) ) (da)r(dy)
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Extend f on Q by f(z) =0 on Q\ .. Then the above establishment can be rewritten as

|
l?lnl'fi)lol'éfalog/mﬂ(dxl) d:rm |: m)! Z HK Lo(k—1)s U(k))

cEYX, k=1

> plog K(z,y)f (@) f(y)m(dz)m(dy)
Qx0
Notice that the set consisting of the functions f supported by €. for some € > 0 (depending
on f) and satisfying (3.4) and (3.5) is dense in the unit sphere of L’Til(Q, A, 7). Taking
supremum over such f on the right hand side gives (3.2). O

The upper bound is much more difficult. On the other hand, the following result
indicate that we are in the right track.

Theorem 3.2. Let p > 1 be a constant, let Q be a finite set and let K: Q x Q — RT
be non-negative function such that K(xz,y) = K(y,x) for any x,y € Q. Let m be a non-
negative function on €. Then

, 1 1 i p
tmsup Slog Y () () [@ S T B oty 7o)

mmoee Ty, T €9 Coen,, k=1 (3.6)
<plogsup »  K(z,y)f(x)f(y)m(z)m(y)
f z,yEe)
where the supremum is taken over all functions f on () satisfying

3 1f (@)= () = 1 (3.7)

TEC

Proof. We may assume that 7(-) is a probability density on Q and 7(z) > 0, for otherwise
we can replace 7(-) by 7(-)/m(£2) and remove all zero points of 7 from A. Let

1 m
uzLa:EkZ_laxk

be the empirical measure generated by x = (z1,---,z,,). Notice that for each o|in3,,
> M= lixoo—yy =1
y1,~',ym€Q
We have .
S E@otm1) To)
ocEYX, k=1
= D> lmmew D Yxeomyy || K@oeo) 7o)
y17"'7ym€Q UGEm k=1
= Z 1{L3'n:,u} H K(yk—lyyk) Z 1{xocr:y}
Y1, Ym EQ k=1 CEXm



By a simple combinatorial argument

> Tpxormyy = I (muta)!

TEX

TEC
Consequently,
> E@or-)s Towmy)
ocEYX,, k=1
H (mu(z))! Z Liry — H K(yk—1,Yk)
TEQ

Y1, Ym EQ k=1

Let ¢ > 1 be the conjugate number of p and define ¢,,(x) = pu(z)'/97(x)/P. Then

> ul@n) - dulem) [T K k-1, m)
k=1

Y1, Ym EQ
= Z Sux1)  Gp@m) Ly —py H K (yk—1,yx)
Y1, Ym €€ k=1
= ( 11 %(x)mu(x)) > lpprew [ K1)
e

y17"'7ym€Q k=1

where the last step follows from the fact that when LY = pu, there are mu(zx) factors in
the product ¢, (z1) - - - ¢, (xy,) which are equal to ¢, (x) for any x € €2
Summarizing above steps,

Z m(xy) 7 (Tm) [% Z HK(ﬂfu(k—l)ama(k))}
ZT1, T EQ

ST @) o) ﬁ( TT (o)) ( T1 %(m)mw)‘lr

e

x{ Z gbu(a:l)-“%(»’l?m)ﬁK(yk—hyk)r

yl:"'vymeﬂ k::l

Notice that ¢, (z) <1 for any = € Q.

(3.8)

> bular) - dulam HKyk 1, Yk)

y17...7ym€Q

;;epQK(x’y) Z H\/% 1) K(Yr—1, Yk \/%(ﬂﬁk)

Y1, 7ym€Qk3 2

=#(Q) sup K(z,y) >

0 90(371)< ﬁ \/ ¢u($k—1)K(yk—17 yl-c)\/ ¢u($k))90($m)
Y€ Y1,y Ym ES2 k=2

(3.9)



where go(z) = #(Q)"'/2 (x € Q). Consider the Hilbert space £2(2) with norm defined as

gl = (Zg%))m g £3(Q)

e
If we define the linear operator T on £2(Q2) as

= \/ou(@) > K(2,9)\/ou(w)gly) zeQ

ye

then T is self-adjoint: (f,Tg) = (T'f,g) for any f,g € £2(Q, 7). Further, the right hand
side of (3.9) is equal to

sSup K(I, y) <907 Tm_190>
z,y€0N

Notice that gg is a unit vector in £2(Q). Thus,

Z % -Tl ¢u -rm H yk 1ayk < sup K(x y)“Tm 1H

Y1, Ym €EQ x,y €S

< sup K(z,y)||T||™" "= sup K(z,y) sup (g,Tg)™"
z,ye) z,y€e2 lgl2=1

:s;lepﬂK(w,y)(|:|§£1$§€:QK(fc,y) ¢u(x)g () cbu(y)g(y))

Write

> K(x,y)y/ou()g(z)\/du(y)g(y)

z,yeN

= > K@) (y/ou@)a@r@) ) (/o)) )r@)r(y)
z,ye)

and notice that

Z( Gu(x)g(x)m(z)” )2p 1 Z¢M 210 T(x 2p1—19(3;)2§f1

e e
< (X dul@)in(a) ) (Zg )2” = (Zum);p__ll:l.
ze) TEQ TEQ
Thus,

m
Z % xl ¢u -rm H yk 1ayk
k=1

y17"'7ym€Q
< supQK(a:,y)(sblcp Z K(a:,y)f(a:)f(y)ﬁ(x)ﬂ(y)) )
Y€ z,ye)
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where the supremum is taken over all functions f on 2 satisfying

S If@)F () = 1

TEC

In view of (3.8), therefore, it remains to prove

lim 1 log Z w(xy) - m(Tm)

m—oo M
l’l,"',ZCmeQ

[ (T ) (T )| <o

TEC e

(3.10)

m

Indeed, by Stirling formula, m! ~ v/27mm™e™" and

(mu(z))! < Cv/mpu(z) (mu(w))mu(w)em“(:‘) x €}

Hence,

(T (mp())1) < Cm# 72 [T play

m!
IS Y) TEW

Recall that ¢, (z) = u(x)l/qw(a:)l/p and
: i
m
k=1

Therefore,

S w(@) - w@m) {%( 11 (mu(x))!> ( 11 ¢u(1‘)mu(az))—1r

L1, Ty, €N z€eQ zeQ

mu(z)
< CPmpH@)/2 pulz)\
< CPm S w(@) - wem) [ <7r(:v>>

1, L €Q €N
— OPmPH#)/2 Z () - () = CPmP#E/2

L1, Ty, €N

which leads to (3.10). 0

Our argument for the upper bound (3.6) substantially depends on the assumption
that €2 is a finite set. The challenge we currently face is how to extend it to a more general
setting. More precisely, compactification and discretization are two main issues as we try
to apply the high moment asymptotics to some practically interesting models. By far our
cabability are limited. In the next theorem, we extend Theorem 3.1 slightly by a trivil
procedure of discritization.



Theorem 3.3. Let p > 1 be a constant, let Q be a compact set and let 7(-) be a finite
Borel measure on  Let K: Q x Q — R be non-negative continuous function such that
K(z,y) = K(y,z) for any x,y € Q). Then

) 1 L P
llrrrlnjélopalog/mw(dazl) w(dz,,) { Z H (To(k=1)> To(k))
€3 k=1 (3.11)
< plogsup K(z,y)f(z)f(y)m(dx)m(dy)
f JaxQ

where the supremum is taken over all functions f on () satisfying

/ ()77 n(dz) = 1 (3.12)
Q

Sketch of the proof for (3.1). We only need to prove the upper bound. By potential
theory, as p(d — 2) < d,

GP(z)dx < o0
Rd

An easy estimate by Jessen’s inequality gives

1 " P
/(Rd)m dxy -+ dx, |:% Z H G(xg(k) — xa(k—l))

1 m
=l /(Rd)m dydr Y | GP (o) = 2o(e-))

oceEX,, k=1
_ (/R Gp(x)dm)m

which leads to

1 1 . P
lim sup — log /(Rd)m dxy---drm, |:% Z 1;[ G(xa(k) - xo(k—l))} < /Rd Gp('r)d'r

m—oo M

Unfortunately, this simple argument does not give us the right constant.

It is a classic facts that as d = 1, G(x) is continuous on R%; and that as d > 2, G(z)
is ontinuous on R%\ {0} but lim, .o G(z) = .

Notice that for any A C R?, the following shift-invariance

sup [ f@)f(y)n(e)dady = sup [ F(2)f (y)m(x)dady
f AxXA f (2+A)x(2+A)
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suggests that an ordinary compactification by truncation does not work here. We carry
out the compactification procedure as following: Let M > 0 be a large constant. Then

1 ik P
/(Rd)m d.fC1 N da:m {% Z H G(.fg(k) - xa(k1)>:|

Toen, k=1

1
— codzy, | —
zy:ezd/ MMd)m ’ [m! aezE:m

m

p
X H G((2M Yo (k) + To (k) — CMYyg—1) + %(k—n))}

1
/([M,M}d)m dzy - -dry, [% Z Z

Uezm yl 7"'7ymezd

m p
< [T G@M (Yo — Yot-1) + (To@m) — %(k—n))]

1 LIS p
= doy - dem | — Y ] C@om) — 2o
/([M,M}d)m o ’ [m' (Fatty = otk 1))}

foen,, k=1

(3.13)

IN

where (Why does the infinite series appearing on the right hand side of below

converge?)

G(z)= > G@2My+x)

y€eZs

To fix the problem that G discontinuous at 0, we try to replace G by the continuous
function Gy (x) = min{G(x), N}

Lemma 3.1. (Lemma 3.3, Kénig and Morters (2002)). There is a constant C > 0 such
that for all sufficiently large N and small > 0, there are €, > 0 and ox > 0 such that

dml-nd:vm{ G To(k) — To(k— 1))}
/([M,M]d)m Z H

oEX, k=1
< p2p{m(20)m5}7vm +(1+e™ Z
I=[m(1—pn)]
1 . y
X / dxy---dxm, {— GN(JZU(k) - xg(kl))] }
([_MvM}d)l l! U;l kjgl

where limy o 0y = lim, g €, = 0.

The proof given by Koénig and Morters (2002) is technical. So we omit it here. By

9



Theorem 3.3 we have

m p

1 1 ~
lim sup — log/ dxy -+ dxy, {— GN(To() — To(h—
(1= M, M]d)ym m! Z “ (-1)

m
m—ee GES , k=1

< plogsup Gn(z —y)f(2)f(y)dedy

f /[M,M}dx[M,M}d

< plog sup/
f J[-M,M]ex[—-M,M]4

By (3.13) and Lemma 3.1,

1 1 o b
lim sup — log /(Rd)m dzy - -dry, {% Z H G(%(k) — $a(k—1))

m !
m—oe 0ESm k=1

< plogsup G(z —y)f(z)f(y)dzdy

f /[—M,M}dx[—M,M]d
Finally, the desired upper bound follows from the analytic fact (proof omitted here)
that

Gz —y)f(z)f(y)drdy < p

limsupsup/
M—oo f J[—M,M]ex[—M,M]?

4. Large deviations for local times of additive Brownian motions.

In this section, we provide another successful story in high moment asymptotics.
We come back to independent d-dimensional Brownian motions Wy (t),---, W,(t). The

following multi-parameter process

Wl(t1)+"'+Wp(tp) tl,"'7tp>o

is called an additive Brownian motion. The local time of this process is formally given as
n*(I) = /535 (Wi(s1) 4+ Wy(sp))ds1---ds, xR IcC (R
I

We rely on two recent papers by Khoshnevisan, Xiao and Zhong (2003a, b) for the con-
structions of the local time n*(I). In their papers, Khoshnevisan, Xiao and Zhong (2003a,
b) consider a more general multi-parameter random field named additive Lévy process,
which is generated by independent Lévy processes. In their construction, n* (1) is defined
as the density function of the occupation measure p;:

NI(A) = /5W1(51)+...+Wp(5p)(A)d81 .- -dsp AC R?
I

10



in the case when s is absolutely continuous with respect to the Lebesgue measure on R?.
Applying Theorem 1.1 in Khoshnevisan, Xiao and Zhong (2003a) to our setting, the local
time 7n”(I) exists for every super interval I C (RT)? if and only if

d < 2p.
Further, (1.2) also implies that almost surely, the local time
n"([0,47) (z,t) e RTx RT
is jointly continuous in (x,t) (Corollary 3.3, Khoshnevisan, Xiao and Zhong (2003b)).
Write n(I) = n°(I). We have
n([0,47) £ t%5 ([0, 1]7) (4.1)

We are interested in the large deviation for n([O, 1]”). Notice that as p = 2,

n([0,4%) £ a([0,1]?)

Theorem 4.1. Under d < 2p,

d
Tim ¢72/4 logIP’{n([O, 17) > t} - —(27r)2§<1 - —) T (4.2)
where p is given as

JOA+7)f(7) T’
- dv| d\ 4.3
g II;IIIIzpzl/Rd [ re /1 + 271\ +7[2/1+ 2 1y[2 v (4.3)

Remark. It can be proved that

1
< d)\ <
ps / A+ 2 pppr™ =

We now discuss the proof of Theorem 4.1. By Theorem 1.5 we need only to prove

1 _ N p
Z 1y—d/2 Py | — o 7
nleréo - log(n!)~%“E [77([0, 1]7) } log <2p — d) +log @y’ (4.4)

By Fourier transform, for any ¢q,---,t, > 0,
([0, £1] > -+ x [0, 2p])
1
= U 2([0,t1] % -+ x [0, 1)) Z’\xdaz}d)\

R4

p

d\

exp 2)\ (Wi(s1) + -+ Wp(s p))}dsl oedsy
Rd

_ 277) /Rdcuj];[l/o exp{i)\-Wj(s)}ds

11
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where the second step follows from the definition of the local times as the density of
occupation measures. Hence, for any integer n > 1,

E [n([0,ta] -+ x [0, 8,])"]

1
= (27T)dn /(Rd)n d)\ H/Otj Eexp Z)‘kw<5k)}d51d5n

k=1

By time rearrangement,

/[07 Eexp{ Z)\k }dsl “dsy,
— Z/ Eexp{ ZAU(k }d51 -ds,,

O'GZ {O<81S“'Sn§tj}

- Z /{Ogslg---gsngtv} B exp {ZZ (Z)‘U(j)) : (W(Sk) — W(Sk_1))}dsl - ds,,

ceEX et
- Sk — Sk 1
- U;ﬂ /{Oéslé---<sn<t 1 kl_[lexp{ ’ Z Ao () }dsl -ds,,
:Z/ Hexp{ Skz—Sk 1’2)\00) }d81 s,

where the last step follows from the bijection j — n — j and permutation invariance and
we adopt the convention that sy = 0. where we adopt the convention that sq = 0. Thus




To simplify the above representation, we replace ¢1---,t, by 71,---, 7.

EWMMX~%W%W]

1 et
= d
(2)dn (Rd)n Lezz/ t
></ Hexp{ k—Sk: 1’2)\0(3) dsy---ds r
{0<s1 <8, <t} (07 (4.6)
1 ! avis
1
L g

where Q()\) = (1 +27H)\?)~!
Lemma 4.1. Under d < 2p,

n k P
nlgr;o%log/(mn d)\1~--d)\n{ 3 HQ(ZAUU))} — log p (4.7)
=1 =1

or, equivalently

1 0 n| __ P
Jimy log [n ([0,71] x -+ % [0, 7)) ] =log ;5 (4.8)
We now prove Theorem 4.1 based on Theorem 4.1. Let t1,---,t, > 0. In view of
(4.5), by Holder inequality,
E ([0, t2] x - x [0.1,))"]
1/p 0
< TT{En@o.L)"|} " =t -t) 5 " [ ((0.1)7)"]

where the last step follows from (4.1). Thus,
E [(0,7) x -+ x [0,7,))"]

(
/ e~ (it +t)g [n([o,tl]x---x[o,tp])” dty ---dt,

] [
:E[([O 1])”r( r n+1)].
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By Lemma 4.1 and Stirling formula,

ligrii(gf % log(n!)~%%E [77([0, 1]p)”} > log <0zp211 d) o + log (27'2)(1. (4.9)
On the other hand, notice that 7 = min{7y, - - -, 7, } has the exponential distribution
with the parameter p. Hence,
E[n([0.m) x - x 0,7])|" = B [0(10,77)"] = E7**E [n([0, 1]7)"]
_ p—”;dn—lr<1 i dn)E [n([o, 1]?)”}

where the second step follows from (4.1). By Stirling formula and Lemma 4.1 we have

. 1 a2 n 2p T p
hisolip - log(n!)~%2E [77([0, 1]7) ] < log <2p — d) + log G (4.10)
Combining (4.9) and (4.10) gives (4.4). 0

Sketch of the proof of Lemma 4.1. As before, the proof of the lower bound is the
easy side. Let ¢ > 1 be the conjugate number of p defined by p~' 4+ ¢~! = 1 and let f be
a positive continuous function on R? with f(—\) = f(A) and ||f[], = 1. We have

(/(Rd)n DD ﬁQ(iAUU)ﬂp)W

oeX, k=1 j=1

Z/(Rd)nd)\l"'d)\n<li[f()‘k)) > HWiMﬁ)
— nl /(Rd)n d)\l---d)\n<ﬁf()\k)) ﬁQ(ZAj>

k=
. /(Rd)n dh - dh T FOw = Mc1) Q)

where we follow the convention that A\g = 0.

Define the linear operator 7' on £2(R9) as

7o) = VM) [ 1= WAt g e LR
One can prove that there is a constant C' > 0 such that
(h,Tg) < Cllgllallnll2 g, € LXRY).
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So T is a continuous operator.

In addition, one can see that (h, T'g) = (g, Th) for any g, h € L2(R%). It means that
T is self adjoint. We now let g be a bounded and locally supported function on R¢ with
llgl|2 = 1. Then there is § > 0 such that f > § and @ > ¢ on the support of g. In addition,
notice that () < 1. Thus,

/ i dh T FO% = A 1)Q0M)
(Rd)n k=1

> 0%||g] /(Rd)n dAr - 'd)\ng()‘l)< [T Vo1 = A1) Q()‘k))g()‘n)
k=2
= 8°|lgl12(g, T" *g).

Consider the spectral representation of the self-adjoint operator 7"

(9,Tg) = / N Oy (dO)

— o0

where p4(df) is a probability measure on R. By the mapping theorem,

(9, T" 'g) = /O; 0" 1y (do) > (/OO gﬂg(dg))n_l = (g, Tg)"

— 00
where the second step follows from Jensen’s inequality.

Hence,

it s ([ onean] 3 TTQ(200)])
>1og(g. To) <1ox [ | 13- NWAVQARIaW)g(7)dAdy

=10g/ {/ VA +7)VQ(g(A +7) (v)dv}dk-

Notice that the set of all bounded, locally supported g is dense in £2(R?). Taking supre-
mum over g on the right hand sides gives

/
Lo ( [ o] 3 [Ta(Ca)]))

oceX, k=1 (4.11)

> log SUP/ [/ VO +7)vVQ()g(A +7) (v)dv}d/\.

lg|l2=1

15



Since for any g, the function

/ VO +MNVRMgA +7)g(v)dy

is even: H(—A) = H()). Hence, taking supremum over all positive, continuous and even
functions f with || f||, = 1 on the right hand side of (4.11) gives

1 1 n k » 1/p
lgggfﬁlog n'(/(Rd)” dAl.nd}\n[ Z HQ(ZAUU)H )

cES, k=1 j=1

Z%IOg Sup/ {/ VOA+)VQ(M)gA +7) (v)dvrdk

lgl2=1

1
= —logp.
p
The upper bound is an indirect consequence of the next lemma (proof omitted). O

Lemma 4.2. Let n(z) and Q(x) be two non-negative functions on Z% such that  is locally
supported, n(—x) = m(x) for all x € Z¢, and that

Q) - (4.12)
Then
n n k
nh_)rgo % log Z (H W(:Ek)) [i' Z H Q(Zazgm)] = log p (4.13)
x1,,Tn €L k=1 Toex, k=1 j=1
where »
p= sup d @) Y VR +yVQW) f(x+ y)f(y)}
2=1 pega yezd
and 12
o= (3 2@

5. Remaining problems.

One of interesting problem is to study the large deviation for intersection local
time of Markov processes. Under reasonable condition, the intersection local time (assume
existence) run by p i.i.d. Markov processes and stopped by the i.i.d. exponential times

Ti,- -+, Tp, can be written in the form as

/m w(dxy) - w(dry,) {% Z H K(Zg(k-1) To(k))

T oEX., k=1
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The main difficulty is on the upper bound.

Another open problem is the intersection in the supercrtical case defined by
p(d—2)>d (5.1)

Let {S1(n)},--+,{S,(n)} be i.i.d. symmetric random walk on Z%. It is a well known fact
that under (5.1),

foo = Z Lisy(k1)y==8,(ky)} < OO @.s.
klv"'ykp:].

Joo = #{Sl[l,oo) N---N Sp[l,oo)} <00 a.s.

In their very influetial peper, Khanin, Mazel, Shlosman and Sinai (1994) claim that
in the special case d > 5 and p = 2,

exp{—c1t*/?} < P{I, >t} < exp{—cot'/?}

exp{ —td%%ré} <P{J >t} < exp{ —td%Q*‘s}
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