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Ia. Definition of Brownian Motion (M, g) =

d-dimensional complete Riemannian manifold.

∆ =
1
√
g

∂

∂xi

(
√
ggij

∂

∂xj

)
(summation convention)

gij = metric tensor, gij = inverse, g = det(gij).

Brownian motion (Xt, Px) is the local diffusion

process generated by 1
2∆.

WHY BROWNIAN MOTION IN DIFF GEOM?



Ib. Isotopic transport approximation

Brownian motion can be obtained as a weak
limit of piecewise geodesic processes.

Ingredients: geodesics γ(t) = γ(t,m, ξ) = expm(tξ)
and random times 0 < t1 < t2 < · · ·

Starting at m ∈ M with initial velocity ξ0, we
move along a geodesic γ(t),0 ≤ t ≤ t1

At time t1 choose a new direction ξ1 at ran-
dom, uniformly distributed on the tangent sphere.

Move along the geodesic t→ γ(t− t1; γ(t1), ξ1)
for t1 ≤ t ≤ t2.



At time t2 choose a new direction ξ2 at ran-

dom, uniformly distributed on the tangent sphere,

independent of (t1, t2, ξ2).

Move along the geodesic t→ γ(t− t2; γ(t2), ξ2)
for t2 ≤ t ≤ t3.

Continue in this fashion to obtain a piecewise

smooth path (X(t), ξ(t)).

The geodesics have constant velocity 1/ε =

|γ′(t)|.

The random times tn − tn−1 are independent

with the exponential distribution with mean ε2.



This gives a continuous parameter Markov pro-

cess on the tangent bundle, called the isotropic

transport process.

Infinitesimal generator is

Aεf =
Df

ε
+

1

ε2

∫
Sm

(
f(m, ξ′)− f(m, ξ)

)
ωm(dξ′).

where D is the horizontal differentiation in the

tangent bundle

ωm is the uniform probability distribution on

the unit tangent sphere Sm.

When ε→ 0 the corresponding semigroups con-

verge to a limit, whose generator is written

f → A0f =
∫
Sm

D2f(m, ξ)ωm(dξ) =
∆f

d

a multiple of the Laplace-Beltrami operator of

(M, g). (use results of T.G. Kurtz, JFA, 1973).



Brownian motion is obtained as the semigroup

limit of a sequence of piecewise smooth Markov

processes on the tangent bundle TM . The lim-

iting process (Br. Mo) is a continuous path

Markov process on M .

Ic. Horizontal flow of orthonormal frames

The isotropic transport process can be gen-

eralized to obtain a Markov process on the

frame bundle T k+1(M), consisting of the set

of frames of k + 1 vectors over M . In partic-

ular we can consider orthonormal frames. In

the limiting case ε → 0, we obtain a diffusion

process on T k(M), equivalent to the process

considered by Itô, Dynkin and Malliavin, called

the horizontal diffusion process on O(M) [see

Ikeda and Watanabe, SDE and Diffusion Pro-

cesses, 2d ed.].



Ic. Mean Value Formulas For f ∈ C∞(M),

Mm(ε, f) :=
∫
∂Bε

f dvd−1 (first meanvalue)

Lm(ε, f) :=
∫
Sd−1(1)

f(expm(εu))ω(du)( 2dm.v.)

Em(ε, f) = Em[f(XTε)] (stochastic m.v.)

Here Tε is the exit time of Brownian motion
from a ball of radius ε, centered at m ∈ M ;
expm is the exponential mapping, which sends
each tangent vector to the time 1 value of the
geodesic which starts at m with that initial di-
rection. ω is the normalized surface measure
on the unit sphere in Mm and vd−1 is the nor-
malized surface measure of the unit sphere in
M .

Asymptotic expansions (P, 1981):

Mm(ε, f) = f(m) +
ε2

2d
∆f(m) + ε4M

(1)
m (ε, f)

Lm(ε, f) = f(m) +
ε2

2d
∆f(m) + ε4L

(1)
m (ε, f)

Em(ε, f) = f(m) +
ε2

2d
∆f(m) + ε4E

(1)
m (ε, f)



In general M(1)
m (ε, f) 6= E

(1)
m (ε, f) 6= L1

m(ε, f)

for small ε > 0. Hence stochastic mean value

6= geom. mean values.

Corollary. If ∀m ∈M , either Em(ε, f)−Mm(ε, f) =

o(ε4) or Em(ε, f)−Lm(ε, f) = o(ε4) then g is an

Einstein metric (ρij = τgij)

E
(1)
m (ε, f) = ∆2f(m) + τ(m)∆f(m) + o(1)

M
(1)
m (ε, f) = 3∆2f(m)− 2 < ∇2f, ρ > −3 < ∇2f, ρ >

− 3 < ∇f,∇τ > +4τ(m)∆f(m) + o(1)

L
(1)
m (ε, f) = ∆2f(m) +

1

3
< ∇f,∇τ >

+ < ∇2f, ρ > +o(1)

ρij : = Ricci tensor

τ : =
d∑

i=1

ρii = scalar curvature



IIa. Exit time and exit place

(M, g) = d-dimensional Riemannian manifold.

Exit time from a ball of radius r about m ∈M

Tr := inf{t > 0 : dist(Xt,m) = r}.

Mean exit time u = Ex[Tr] is the solution of

the equation 1
2∆u = −1 in the ball, with u = 0

on the boundary.

The hitting probability measure is defined by

h = Px[XTr ∈ dy], solution of ∆h = 0 in the ball

with h = δy (Dirac measure) on the boundary.

The joint law of (Tr, XTr) is computed from

the Laplace transform v = Ex[e−αTr;XTr ∈ dy],
solution of 1

2∆v = αv in the ball, with u = δy

on the boundary.



IIb. Br. mo.of Rd and related asymptotics

Brownian motion of Euclidean space has the

well-known properties:

i) The exit time Tr has the Brownian scaling

property; Tr
r2
≡ T1, (Pm).

ii) The exit place is uniformly Pm-distributed

on the sphere: r−1 exp−1
m XTr ≡ Leb(Sd−1).

iii) The exit time and exit place are indepen-

dent random variables: ∀α > 0, ψ ∈ C(M)

Em
(
e−αTrψ(XTr)

)
= Em(e−αTr)Em

(
ψ(XTr)

)

iv) The principal Dirichlet eigenvalue of ∆ on

the ball of radius r is inversely proportional

to the radius2: λ1(Br) = z2d/r
2, where zd is

the first positive zero of the Bessel function

J(d−2)/2.



For any Riemannian manifold, the above prop-
erties hold in the limit r ↓ 0, in the following
sense:

i’)The scaled exit time Tr/r2 converges (r ↓ 0)
in law to a limit T = exit time of Euclidean Br.
Motion from the unit ball of Rd.

ii’) The exit place r−1 exp−1
m (XTr) converges

(r ↓ 0) to normalized Lebesgue measure on
the unit sphere Sd−1 ⊂ Rd.

iii’) The random variables (Tr, XTr) are asymp-
totically independent: ∀α > 0, ψ ∈ C(M)

lim
r↓0

Em

(
e
−αTr

r2ψ(r−1XTr)

)
= Em(e−αT)

∫
Sd−1

ψ(θ)dθ

iv’) λ1(Br) ∼ z2d/r
2, (r ↓ 0)

To what extent do these quantities determine
the local geometry of (M, g)?



III. Exit time distribution of Br. motion

Thm 3.1 (A. Gray & MP, 1983): For any
(M, g), the mean exit time of Br. mo. satisfies

Em(Tr) =
r2

d
+ c1r

4τm + c2r
6 ×(

|R|2m − |ρ|2m +
5τ2m
d

+ 6∆τm

)
+O(r8)

where c1, c2 are constants which depend on the
dimension d. R denotes the Riemann curvature
tensor and ρ the Ricci tensor, defined in terms
of the metric in a normal coordinate chart by

gij(x1, . . . , xd) = δij−
1

3

d∑
a,b=1

Riajb(m)xaxb+O(|x|3), |x| ↓ 0

Ricci tensor defined by

ρij(m) =
d∑

a=1

Riaja(m); |ρ|2m =
d∑

i,j=1

ρ2ij

Scalar curvature and norm of R defined by

τ(m) =
d∑

i=1

ρii(m); |R|2m =
d∑

i,a,j,b=1

R2
iajb



Corollary 3.2 If d = 2 and the mean exit time

satisfies Em(Tr) = r2/2 + o(r4), r ↓ 0, then

(M, g) is locally isometric to R2.

(The scalar curvature = Gaussian curvature is

the only local geometric invariant in d = 2.)

In d > 2 dimensions we obtain converse results

by writing the third term of the expansion in

terms of the Weyl tensor Cijkl by writing

|R|2 − |ρ|2 = |C|2 +
6− d

d− 2
|ρ|2

Positive definite if 2 < d < 6.

Corollary 3.3 Suppose that 2 < d < 6 and

∀m ∈ M we have Em(Tr) = r2/d+ o(r6), r ↓ 0.

Then (M, g) is locally isometric to Rd.



Corollary 3.4 Suppose that d < 6 and ∀m ∈M
∃r(m) > 0 s.t. the Pm law of Tr/r2 doesn’t

depend on r for 0 < r < r(m). Then (M, g) is

locally isometric to Rd.

END OF POSITIVE RESULTS ON EXIT TIME

Proposition 3.5(Hughes, 1992). Let M =

S3×H3, the product of the unit 3-dimensional

sphere with the three-dimensional hyperbolic

space. Then for any r < π, the Pm law of Tr
agrees with that of R6. In particular Em(Tr) =

r2/6, with no correction terms. But M is not

flat.

Counter-examples my be obtained in any di-

mension by taking an additional flat factor, in

the form M = S3 ×R3 ×Rd−6



IV. Exit place distribution of Br. motion

Euclidean space cannot be characterized by

the exit place of Brownian motion. For ex-

ample, consider a brownian particle starting at

the North Pole and hitting the Arctic circle,

according to the uniform distribution.

To study exit place, consider the exponential

mapping expm : Rd →M which sends 0 → m ∈
M and maps straight lines to geodesics eminat-

ing from m. If Ψ ∈ Sd−1, define the harmonic

measure µm by

HrΨ(m) : = Em
(
Ψ(r−1 expm(XTr)

)
=

∫
Sd−1

Ψ(θ)µm(r, dθ)



Theorem 4.1 Ming Liao, 1988. For any (M, g),

the harmonic measure operator has the asymp-

totic expansion

HrΨ(m)=
∫
Sd−1

Ψ(θ)

1−
r2ρ#m(θ)

12
−
r3ρ##

m (θ)

24

 dθ+O(r4)

where ρ# is the traceless Ricci tensor

ρ#m(θ) =

(
ρij −

δijτm

d

)
θiθj and

ρ##
m (θ) =

∂ρij

∂xk
θiθjθk −

1

d+ 2
θk
∂τ

∂θk

(repeated indices imply a summation.) In case

d = 2, ρ#m = 0 and we have

Corollary 4.2 If d = 2 and the exit place law

satisfies

EmΨ(XTr) =
∫
S1

Ψ(θ)dθ+ o(r3), r ↓ 0,

then (M, g) has constant curvature.



Higher dimensional case

Corollary 4.3 Suppose that d > 2 and that

EmΨ(XTr) =
∫
Sd−1

Ψ(θ)dθ+ o(r3), r ↓ 0

Then ρ#(m) = 0, esp. g is an Einstein metric

(constant Ricci curvature).

Combined result on exit time and exit place

for all dimensions

Corollary 4.4 Suppose that ∀m ∈ M , the exit

place law satisfies

EmΨ(XTr) =
∫
Sd−1

Ψ(θ)dθ+ o(r3), r ↓ 0

and the mean exit time satisfies Em(Tr) =

r2/d+ o(r6), r ↓ 0. Then (M, g) is locally iso-

metric to the Euclidean space Rd.



V. Joint law of exit time and exit place On

any space of constant sectional curvature, the

exit time and exit place from a ball are inde-

pendent random variables, for Brownian paths

starting at the center. In order to study the

joint law on more general spaces we introduce

the Laplace transfrom

Hr(α,Ψ) : = Em

(
e
−αTr

r2Ψ(
exp−1

m (XTr)

r
)

)
=

∫
Sd−1

Ψ(θ)µαm(r, dθ)

Keisuke Hara(1996) obtained an asymptotic

expansion

Hr(α,Ψ) = c0(α)
∫

Ψ + r2
∫
uΨ + r3

∫
vΨ +O(r4)

u(θ) = c1(α)ρijθ
iθj + c2(α)τ

v(θ) = c3(α)∂iρjkθ
iθjθk + c4(α)∂iτθ

i

where c1, c2, c3, c4 are expressed in terms of the

Laplace transform of the exit time law of Eu-

clidean Brownian motion from the unit ball.



Corollary 5.1 If ∀m ∈M the random variables

Tr, XTr) are independent ∀r < r(m). Then

τ(m) = constant.

[also proved by Ming Liao, Kozaki-Ogura] Ques-

tion: Does independence imply Einstein met-

ric?

Example 5.2 Let M = S3×H3 with the prod-

uct metric. Then ∀r < π, Tr and XTr are in-

dependent. But M is not an Einstein space,

since Ricci curvature is not constant.



VI. Principal eigenvalue of the Laplacian

λ1(m, r) := inf
(f :f 6≡0,f=0on ∂Br)

∫
Br |df |

2∫
Br |f |2

.

Theorem 6.1(Karp and MP, 1987)

λ1(m, r) =
z2d
r2
−
τm

6
+ const.r2 ×

[|R|2m − |ρ|2m + 6∆τm] +O(r4), r ↓ 0

where constant depends only on d; zd is the

first positive zero of the Bessel function J(d−2)/2.

Corollary 6.2 Suppose that d < 6 and that

∀m ∈M we have λ1(m, r) = z2d/r
2+o(r2), r ↓ 0.

Then (M, g) is locally isometric to Rd.

Example 6/3 Let M = S3×H3. Then ∀r < π

we have λ1(m, r) = z26/r
2 (exactly as for M =

R6).



VII. Some methods. Local computations are

made by reducing to a sequence of equations

in the tangent space, based on the Laplacian

of Euclidean space. Let

Φε : C∞(Mm) 7→ C∞(M)

(Φεf)(expm x) : = f(x/ε).

Then ∀f ∈ C∞(Mm) we have asymp. for ε ↓ 0

Φ−1
ε ∆Φεf = ε−2∆−2f +

∞∑
k=0

εk∆kf

where ∆k maps a homog. polynomial of de-

gree n to a homog. polynomial of degree n+k:

∆−2 =
d∑

i=1

∂2

∂x2i
, ∆0=−

2

3

d∑
i,a=1

ρia(m)xa
∂

∂xi

+
1

3

d∑
i,a,j,b=1

Riajb(m)xaxb
∂2

∂xi∂xj

In general the coefficients of ∆k depend on the

curvature tensor and its derivatives of order

≤ k.



∆0,∆1,∆2 were computed by Gray and MP

(1983); ∆3 was computed by Kozaki and Ogura

(1988).

Application to mean exit time: approximate

solution

fε = Φε(ε
2F0 + ε4F2 + ε5F3 + ε6F4)

where Fi = 0 on ∂B1 and inside satisfy

∆−2F0 + 1 = 0

∆−2F2 + ∆0F0 = 0

∆−2F3 + ∆1F0 = 0

∆−2F4 + ∆0F2 + ∆2F0 = 0

⇒ F0(0) =
1

2d
, F2(0) =

τm

12d2(d+ 2)
, F3(0) = 0

∆fε = −1 +O
(
ε8
)



VIII. Computations on M = S3 ×H3

∆Mf =
∂2

∂r21
+ (2cot r1)

∂

∂r1
+ (csc2 r1)∆

1
S2

+
∂2

∂r22
+ (2coth r2)

∂

∂r2
+ (csch2r2)∆

2
S2

Lemma. ∀f(r1, r2) ∈ C2(R2), we have conju-

gacy relation

∆M

[
f(r1, r2)

q(r1, r2)

]
=

1

q(r1, r2)
∆R6f(r1, r2)

where

q(r1, r2) =
sin r1
r1

sinh r2
r2

∆R6f =
∂2f

∂r21
+

2

r1

∂f

∂r1
+
∂2f

∂r22
+

2

r2

∂f

∂r2

This allows one to go back and forth from

computations on M to computations on R6,

when one restricts to bi-radial functions f =

f(r1, r2). Proof is by direct computation.



IX. Brownian motion from imbedded man-

ifolds. Let M be an oriented hypersurface in

Rd+1 with unit normal vector (n1, . . . , nd+1)

and mean curvature H = divn. Then

∆Mf =
d+1∑
i,j=1

(δij − ninj)
∂2f

∂xi∂xj
+ dH

d+1∑
i=1

ni
∂f

∂xi

T ext
r := inf{t > 0 : |Xt−m| = r} (extrinsic mean

exit time).

Theorem(L. Karp & MP, 1985) We have the

asymptotic expansion when r ↓ 0:

Em(T ext
r ) =

r2

2d
+

r4H2

8(d+ 1)
+O(r5)

Corollary 1. If ∀m ∈ M Em(T ext
r ) = r2/2d,

then M is a minimal hypersurface.

Corollary 2. If ∀m ∈ M, r > 0, the extrin-

sic and intrinsic mean exit times are equal:

Em(T ext
r ) = Em(Tr), then M is a flat hyper-

plane in Rd+1.


