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Brownian motion
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Ia. Definition of Brownian Motion (M, g) =
d-dimensional complete Riemannian manifold.

1 0 0
A =— V99" — (summation convention)
\/§8:z:i 8a:j

g;j = metric tensor, g/ = inverse, g = det(g;;).

Brownian motion (X, P;) is the local diffusion
process generated by SA.

WHY BROWNIAN MOTION IN DIFF GEOM?



Ib. Isotopic transport approximation

Brownian motion can be obtained as a weak
limit of piecewise geodesiCc processes.

Ingredients: geodesics v(t) = ~v(t,m, &) = exp,,(t&)
and random times 0 <t1 <to < ---

Starting at m € M with initial velocity &y, we
move along a geodesic v(t),0 <t <ty

At time t; choose a new direction &1 at ran-
dom, uniformly distributed on the tangent sphere.

Move along the geodesic t — ~(¢t —t1; v(t1), &1)
for t1 <t < to.



At time t> choose a new direction & at ran-
dom, uniformly distributed on the tangent sphere,
independent of (t1,t5,&5).

Move along the geodesic t — ~v(t — to: v(t2), £2)
for to <t < t3.

Continue in this fashion to obtain a piecewise
smooth path (X (¢),&(t)).

The geodesics have constant velocity 1/e =

(1)

The random times t, — t,,_1 are independent

with the exponential distribution with mean €2.



T his gives a continuous parameter Markov pro-
cess on the tangent bundle, called the isotropic
transport process.

Infinitesimal generator is

g =L S [ (16n,€) — 50m,)) (e

where D is the horizontal differentiation in the
tangent bundle

wm 1S the uniform probability distribution on
the unit tangent sphere S;,.

When ¢ — 0 the corresponding semigroups con-
verge to a limit, whose generator is written

A
for A% = [ D2f(m, &) wm(de) = =7
a multiple of the Laplace-Beltrami operator of

(M, g). (use results of T.G. Kurtz, JFA, 1973).



Brownian motion is obtained as the semigroup
limit of a sequence of piecewise smooth Markov
processes on the tangent bundle T'M. The lim-
iting process (Br. Mo) is a continuous path
Markov process on M.

Ic. Horizontal flow of orthonormal frames

The isotropic transport process can be gen-
eralized to obtain a Markov process on the
frame bundle T*+t1(M), consisting of the set
of frames of kK + 1 vectors over M. In partic-
ular we can consider orthonormal frames. In
the limiting case ¢ — 0, we obtain a diffusion
pProcess on Tk(M), equivalent to the process
considered by Ito, Dynkin and Malliavin, called
the horizontal diffusion process on O(M) [see
Ikeda and Watanabe, SDE and Diffusion Pro-
cesses, 2d ed.].



Ic. Mean Value Formulas For f € C°(M),

Mm(e, f) = on fdvg_1 (first meanvalue)
(e l) = [, f(@Pm(eu))w(dun)(2dm.v)
Em(e, f) = Eml[f(Xr1)] (stochastic m.v.)

Here T¢ is the exit time of Brownian motion
from a ball of radius ¢, centered at m € M;
exp,, is the exponential mapping, which sends
each tangent vector to the time 1 value of the
geodesic which starts at m with that initial di-
rection. w is the normalized surface measure
on the unit sphere in M;, and v;_41 Is the nor-
malized surface measure of the unit sphere in
M.

Asymptotic expansions (P, 1981):
2
Mm(e, f) = f(m)+ %Af(m) + M e, f)
2
Ln(e, 1) = f(m) + S AF(m) + *Li? (e, )

e 4 (1)
Em(e, f) = f(m)+ —Af(m) + B (e )



In general M (e, f) # ES (e, f) # Lk (e f)
for small ¢ > 0. Hence stochastic mean value
Z#* geom. mean values.

Corollary. If Vm € M, either En(e, f)—Mm(e, f) =
o(e*) or Em(e, f) — Lm(e, f) = o(e*) then g is an
Einstein metric (p;; = 7g;;)

ESD (e, £) = A2f(m) 4+ 7(m) AF(m) + o(1)
M (e, ) = 382F(m) —2 < V2f,p> -3 < V2f,p>
— 3<VLVT>441r(m)Af(m) + o(1)

LB (e, f) = A2f(m) + % <V, V>
+ < V2f,p>+o(1)

pij - = Ricci tensor

d
T = ) p; = sScalar curvature
i=1



IIa. Exit time and exit place
(M, g) = d-dimensional Riemannian manifold.

Exit time from a ball of radius » about m € M
Tr = inf{t > 0 : dist(X¢,m) = r}.

Mean exit time u = E.[T,] is the solution of
the equation %Au — —1 in the ball, with « =0
on the boundary.

The hitting probability measure is defined by
h = Py[X7. € dy], solution of Ah = 0 in the ball
with h = éy (Dirac measure) on the boundary.

The joint law of (T, X7.) is computed from
the Laplace transform v = Ez[e=Tr; X1 € dy],
solution of 3Av = av in the ball, with u = §y
on the boundary.



IIb. Br. mo.of R? and related asymptotics

Brownian motion of Euclidean space has the
well-known properties:

i) The exit time T, has the Brownian scaling
property; 25 =T1, (Pm).

ii) The exit place is uniformly P,,-distributed
on the sphere: r~lexp;,! X7 = Leb(S%1).

iii) The exit time and exit place are indepen-
dent random variables: Va > 0,9 € C(M)

Em (e=Tp(X1,)) = Bu(e™ ") By ((X1,))

iv) The principal Dirichlet eigenvalue of A on
the ball of radius r is inversely proportional
to the radius?: A1(B;) = z2/r?, where z; is
the first positive zero of the Bessel function

J(a-2)/2-



For any Riemannian manifold, the above prop-
erties hold in the limit » | O, in the following
sense:

i") The scaled exit time T}./r2 converges (r | 0)
in law to a limit T = exit time of Euclidean Br.
Motion from the unit ball of R,

ii") The exit place r~lexp,'(X7 ) converges
(r | 0) to normalized Lebesgue measure on
the unit sphere S¢-1 - R4,

iii') The random variables (7}, Xp.) are asymp-
totically independent: VYa > 0,¢ € C(M)

oI _
LJ[EI Em <e r2a(r 1XT7~)) = FEm(e O‘T) /Sd—l (6)do

V') A1(Br) ~ z3/r?, (r | 0)

To what extent do these quantities determine
the local geometry of (M, g)7



III. Exit time distribution of Br. motion

Thm 3.1 (A. Gray & MP, 1983): For any
(M, g), the mean exit time of Br. mo. satisfies

2
-
En(T,) = —~ + clr4Tm + 027“6 X

572
(|R\% ol + =+ 6Afm> +0(r®)

where cq, co are constants which depend on the
dimension d. R denotes the Riemann curvature
tensor and p the Ricci tensor, defined in terms
of the metric in a normal coordinate chart by

, d
gz’j(wlaw-axd):éij_g N Rigp(m)zazy+0(|z3), |2
a,b=1

Ricci tensor defined by
d 2 d 2
pij(m) = > Rigja(m); lpl;m= D ri;
a=1

1,j=1
Scalar curvature and norm of R defined by

d d
. >
r(m) =Y pu(m); Rz = Y i
1=1 1,a,7,b=1



Corollary 3.2 If d = 2 and the mean exit time
satisfies En(Ty) = r2/2 4+ o(r*),r | 0, then
(M, g) is locally isometric to RZ.

(The scalar curvature = Gaussian curvature is
the only local geometric invariant in d = 2.)

In d > 2 dimensions we obtain converse results
by writing the third term of the expansion in
terms of the Weyl tensor C;;j; by writing

[R|? — |p|* = |C|2+ |p|2
Positive definite if 2 < d < 6.
Corollary 3.3 Suppose that 2 < d < 6 and

Vm € M we have En(Ty) = r2/d+ o(r®),r | O.
Then (M, g) is locally isometric to R<.



Corollary 3.4 Suppose thatd < 6 and Vm € M
Ir(m) > 0 s.t. the P, law of T,/r? doesn't
depend on r for 0 < r < r(m). Then (M,g) is
locally isometric to RY.

END OF POSITIVE RESULTS ON EXIT TIME

Proposition 3.5(Hughes, 1992). Let M =
S3 x H3, the product of the unit 3-dimensional
sphere with the three-dimensional hyperbolic
space. Then for any r < m, the P, law of T;
agrees with that of R. In particular En(T}) =
r2/6, with no correction terms. But M is not
flat.

Counter-examples my be obtained in any di-
mension by taking an additional flat factor, in
the form M = S3 x R3 x RI—©



IV. EXxit place distribution of Br. motion
Euclidean space cannot be characterized by
the exit place of Brownian motion. For ex-
ample, consider a brownian particle starting at
the North Pole and hitting the Arctic circle,
according to the uniform distribution.

To study exit place, consider the exponential
mapping exp,, : RY — M which sends 0 — m €
M and maps straight lines to geodesics eminat-
ing from m. If W € S9=1 define the harmonic
measure pm by

H,W(m) :

Em (W(T_l eXpm(XTr))
= [ sy YOpum(r, o)



Theorem 4.1 Ming Liao, 1988. For any (M, g),
the harmonic measure operator has the asymp-
totic expansion

2o (0) 3ol (0)
12 24

Hrllf(m)z/sd_l W () (1 _ ) d0+O

where p# is the traceless Ricci tensor

O; T
p7(0) = (Pz’j — ngm> 0;0; and

0p;i 1 oT
#H(0) = Y09.0.0, — 0

(repeated indices imply a summation.) In case
d = 2, p% — 0 and we have

Corollary 4.2 If d = 2 and the exit place law
satisfies

EnWV(XT,) = /Sl W(0)do + o(r3),r | 0,

then (M, g) has constant curvature.



Higher dimensional case

Corollary 4.3 Suppose that d > 2 and that
EmW(X7,) = /Sd_l W(0)do + o(+3),7 | 0

Then p#(m) = 0, esp. ¢ is an Einstein metric
(constant Ricci curvature).

Combined result on exit time and exit place
for all dimensions

Corollary 4.4 Suppose that Vm € M, the exit
place law satisfies

EmW(X7,) = /Sd_1 W(0)do + o(+3),7 | 0

and the mean exit time satisfies En(1Ty) =
r2/d 4+ o(r®),r | 0. Then (M,g) is locally iso-
metric to the Euclidean space RY.



V. Joint law of exit time and exit place On
any space of constant sectional curvature, the
exit time and exit place from a ball are inde-
pendent random variables, for Brownian paths
starting at the center. In order to study the
joint law on more general spaces we introduce
the Laplace transfrom

oI exprl(x
Em <e “2w( pmr( Tr)))

Hy(a, V) :

= [ VO, d0)

Keisuke Hara(1996) obtained an asymptotic
expansion

Hy(a, W) = cola) / W+ 2 /u\l! + r3/v\lf + o6
w(0) = c1()pi007 + cx(a)r
v(f) = (33(04)3Z-pjk9z9~79k—I—C4(oz)8i7'9i

where cq1, ¢, c3, cq4 are expressed in terms of the

Laplace transform of the exit time law of Eu-
clidean Brownian motion from the unit ball.



Corollary 5.1 If Vm € M the random variables
Tr, X1.) are independent Vr < r(m). Then
7(m) = constant.

[also proved by Ming Liao, Kozaki-Ogura] Ques-
tion: Does independence imply Einstein met-
ric?

Example 5.2 Let M = S3 x H3 with the prod-
uct metric. Then Vr < m, T, and X, are in-
dependent. But M is not an Einstein space,
since Ricci curvature is not constant.



VI. Principal eigenvalue of the Laplacian

2
A(m,r) = inf I, 191 :
(f:f#0,f=00n8B;) [p |f|?

Theorem 6.1(Karp and MP, 1987)

2
2 T

‘QZ — ™ 1 const.r? x
T 6

[|RIZ, — |p|2, + 6 ATm] +O@*),r | 0

where constant depends only on d; z; is the
first positive zero of the Bessel function J;_5) /5.

A(m,r) =

Corollary 6.2 Suppose that d < 6 and that
Vm € M we have A\q{(m,r) = z62l/7“2—|—0(r2),7“ } 0.
Then (M, g) is locally isometric to R<.

Example 6/3 Let M = S3x H3. ThenVr <=
we have A\ (m,r) = 22/r? (exactly as for M =
R9).



VII. Some methods. Local computations are
made by reducing to a sequence of equations
in the tangent space, based on the Laplacian
of Euclidean space. Let

e . C®°(My,) — C°(M)
(Pef)(expmz): = f(x/e).
Then Vf € C°°(M,,) we have asymp. for e | O

O
P IAGSf =€ A of + Y FALS
k=0

where A; maps a homog. polynomial of de-
gree n to a homog. polynomial of degree n—+k:

d
Z 2 5 Z pza(m)fca
i=19%; za, 1 L
1@ 52
+ = z{; 1Rzajb(m)xaxba iaw]
1,a,7,

In general the coefficients of A, depend on the
curvature tensor and its derivatives of order
< k.



Ao, A1, A> were computed by Gray and MP
(1983); A3 was computed by Kozaki and Ogura
(1988).

Application to mean exit time: approximate
solution

fe = CDG(EQFO -+ €4F2 + €5F3 + €6F4)

where F; = 0 on 9B; and inside satisfy

A _Fg+1

A _oFs 4+ AgFyg = O

A _5F3+ A1Fy = O
A_oFp+ Aglky 4+ Axly 0

O

& Fp(0) = —, Fr(0) = — "

2d 122(d 4 2) 130 =0

Af. = —1+0(68)



VIII. Computations on M = S3 x H3

92 5, 5 1
A = — + (2cot —— + (Csc A
Mmf o2 ( Tl)arl (cscr1)Ago
+ o° + (2 cothry) & + (csch?r,) A2
- A To )—— T
Or3 2/ Oro 27782

Lemma. Vf(ry,ro) € C2(R2), we have conju-
gacy relation

f(T1,T2)] 1
A = A ,
M [CI(TL’PQ) q(ri,r2) ref(r1,72)
where
sinry sinh ro
Q(’I“]_,’I"Q) —
71 )
92f 2 9f  B8%f 2 Of

ory ri0ry  Ors  ro0rs
This allows one to go back and forth from
computations on M to computations on RS,
when one restricts to bi-radial functions f =
f(r1,m2). Proof is by direct computation.



IX. Brownian motion from imbedded man-
ifolds. Let M be an oriented hypersurface in
R4TL with unit normal vector (ni,...,ngi1)
and mean curvature H = divn. Then

d+1 82f d+1 8f
Ayf= > (6 —nmnj)—-—+dH > n;

ii=1 ;0 = 8%

T .= inf{t > 0 : | X;—m| = r} (extrinsic mean
exit time).

Theorem(L. Karp & MP, 1985) We have the
asymptotic expansion when r | O:

ext re r*H> 5
Enm (15 —|— + O
Corollary 1. If Vm € M En(TSY) = r?/2d,

then M is a minimal hypersurface.

Corollary 2. If Vvm € M,r > 0, the extrin-
sic and intrinsic mean exit times are equal:
En(TSYY = E,(T;), then M is a flat hyper-
plane in R4t1,



