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Background. One dimensional Fourier analy-

sis of piecewise smooth functions features the

following properties:

Convergence: The F.S. converges to the av-

erage of the left and right limits.

Gibbs-Wilbraham phenomenon: In the neigh-

borhood of a jump, the partial sums overshoot

the jump by approx 9% of the jump.

Localization: If the function is zero on an in-

terval, then the F.S. converges to zero there.



In higher dimensions these properties are no

longer valid. We illustrate in the following

model cases:

I. 2D Fourier-Bessel series: f(x) =
∑

n≥1 AnJ0(znx)

where J0(zn) = 0

II.3D Fourier-Bessel series: f(x) =
∑

n≥1 Bn
sinnπx

nπx

In both cases we have the radial eigenfunc-

tions of the Laplace operator in the respective

dimensions, where we have Dirichlet boundary

conditions on the the unit sphere. When we

dispense with boundary conditions, the spec-

tral analysis of the 3D Laplace operator is pro-

vided by

III. Fourier integral in 3D: f(x) =
∫
R3 f̂(µ)ei<µ,x> dµ



I. 2D F-Bessel series of

f(x) = 1 for 0 ≤ x ≤ 1

Note the usual Gibbs phenomenon at x = 1

and the strange behavior at x = 0. This is

due to the slow convergence at x = 0 (speed

n−1/2) in contrast to speed n−1 at x 6= 0.



II. 3D F-Bessel series of

f(x) = 1 for 0 ≤ x ≤ 1

In this case the partial sums satisfy

lim inf
M→∞

FM(0) = 0, lim sup
M→∞

fM(0) = 2

We still have the Gibbs overshoot at x = 0,

but now the series diverges at x = 0 where the

function is smooth.



III. 3D Fourier integral of

f(x) = 1 for 0 ≤ |x| ≤ 1 andf(x) = 0 otherwise



I.1 Abs. inversion of F. T. on Rn

f ∈ L1(Rn), f̂(ξ) :=
∫
Rn

f(x)e−2πix·ξ dx

Gaussian (heat kernel) example:

Ht(x) =
e−|x|

2/4t

(4πt)n/2
, Ĥt(ξ) = e−4π2t|ξ|2

This basic example allows one to write the heat
kernel convolution of a general f ∈ L1(Rn) as
a Fourier integral:∫

Rn
Ht(y)f(x− y) dy =

∫
Rn

Ĥt(ξ)f̂(ξ)e2πix·ξ dξ.

∀f ∈ L1(Rn) the l.h.s. has a t ↓ 0 limit a.e.
x ∈ Rn. If also f̂ ∈ L1(Rn) then the r.h.s.
tends to a continuous limit when t ↓ 0 and we
have the absolutely convergent a.e. formula

f(x) =
∫
Rn

f̂(ξ)e2πix·ξdξ (∗)

By re-defining f on a null set, then (*) holds
everywhere. For example, if f has n+1 deriva-
tives in L1(Rn), then f̂(ξ) = O(|ξ|−(n+1)). Can
assume less with Bernstein techniques.



I.2 Bochner’s approach

Bochner (1931) studied the pointwise conver-

gence of the spherical partial sums

SMf(x) :=
∫
|ξ|≤M

f̂(ξ)e2πix·ξ dξ. (I.2.1)

Spherical Fourier inversion is the statement

SMf(x) → f(x) when M → ∞. To study this,

introduce the spherical mean value

f̄x(r) =
1

ωn−1

∫
|ω|=1

f(x + rω)dSω

where the integration is with respect to the

induced surface measure on the unit sphere

and ωn−1 is the total surface measure of the

unit sphere.

By transforming the integrals, we can write

SMf(x) = ωn−1

∫ ∞

0
Dn

M(r)f̄x(r)r
n−1 dr (∗∗)



Spherical Dirichlet kernel is

Dn
M(z) :=

∫
|ξ|≤M

e−2πix·ξ dξ =
MnJn/2(2πM |z|)

(M |z|)n/2

and Jn/2 is a standard Bessel function.

The principal properties of the Dirichlet kernel

are the following, where Cn denotes a generic

constant:

(i)Dn
M(0) = CnMn

(ii)r > 0 ⇒ Dn
M(r) = CnM

n−1
2 [cos(2πMr − θn) + O(

1

M
)] , M ↑ ∞

(iii)|Dn
M(r)| ≤

CnMn

(1 + Mr)
n+1
2

(iv)Dn
M(r) =

−1

2πr

d

dr
Dn−2

M (r) n ≥ 3, r > 0

Theorem I.2.1(Bochner) Let n = 2k + 1 and

let r → f̄x(r) be absolutely continuous, and its

derivatives of orders through k − 1 and



∫∞
0 rj−1|f̄(j)

x (r)| dr < ∞ for 1 ≤ j ≤ k. Then

lim
M→∞

SMf(x) = f̄x(0 + 0) (I.2.5)

Hence pointwise Fourier inversion requires only

(n − 1)/2 derivatives, instead of n + 1. The

proof uses integration by parts applied to (**).

Example Let n = 3 and f(x) = 1[0,a](|x|), the

indicator function of the ball of radius a cen-

tered at 0 ∈ R3. Then r → f̄x(r) is Lipschitz

continuous when x 6= 0, but has a unit jump

at r = a when x = 0. Theorem I.2.1 predicts

convergence at x 6= 0 and suggests difficulties

at x = 0. In fact, a direct computation shows

that

SMf(0) = −
2

π
sin(2πMa) + 2

∫ a

0

sin 2πMr

πr
dr

which oscillates boundedly when M →∞.



Kahane (1995) put this example into a general

context, as follows:

K1: Suppose that K ⊂ R3 is a bounded region

with analytic boundary. If there exists x ∈ K

so that

lim
M

SM1K(x) fails to exist,

then K is a sphere centered at x

K2: Given a finite set P1, . . . , Pk ∈ R3, there ex-

ists a bounded region with C∞ boundary such

that limM SM1K(x) fails to exist whenever x ∈
{P1, . . . , Pk}



I.3 Piecewise smooth viewpoint

Definition: f ∈ L1(Rn) is piecewise smooth

with respect to x ∈ Rn if there is a finite set

0 = a0 < a1 < · · · < aK such that r → f̄x(r)

is absolutely continuous on each subinterval,

with right and left limits and the endpoints,

together with its derivatives of orders ≤ [n+1
2 ];

furthermore
∫∞
0 rj−1|f̄(j)

x (r)| dr < ∞ for 1 ≤ j ≤
[n+1

2 ].

Definition: The differentiability index of f ∈
L1(Rn) with respect to x ∈ Rn, is defined as

follows:

If r → f̄x(r) is discontinuous, J(f, x) = −1.

Otherwise

J(f ;x) = max{j ≥ 0 : r → f̄x(r) ∈ C(j)}



Example For 1B in R3, J(1B; 0) = −1 whereas

J(1B;x) = 0 for x 6= 0.

Theorem 3.1 [P, 1994] Suppose that f ∈
L1(Rn) is piecewise smooth with respect to

x ∈ Rn. Then limM SMf(x) exists if and only

if J(f ;x) ≥ [(n−3)
2 ], in which case the limit

= f̄x(0 + 0). Otherwise we have divergence:

SMf(x)−f̄x(0+0) ∼ Mν where ν = (n−5)/2−J(f ;x) ≥ 0

This theorem is quite general, giving a dimension-

dependent relation between pointwise Fourier

inversion and smoothness of the spherical mean

value.



I.4 Fourier series of radial functions

We can attempt to mimick the above steps on

the n-torus, defining

f̂(k) =
∫
Tn

e−2πix·kf(x) dx

S̃Mf(x) =
∑

|k|≤M

e2πik·xf̂(k) =
∫
Tn

D̃M(x− y)f(y) dy

However D̃M(x) :=
∑
|k|≤M e2πik·x 6= D̃(|x|). There-

fore we cannot reduce to a one-dimensional

problem by integration-by-parts. To obtain

some partial results, we restrict to radial func-

tions f(x) = F (|x|) where F ∈ L1(0, π) or more

generally let f be the periodization of a radial

function:

f(x) =
∑

k∈Zn F (|x − k|), so that the Fourier

coefficients of f are also radial and we can

apply the Poisson sumation formula.



Theorem I.4.1 (P,S,T, 1993) Suppose that

n = 3 and that F ∈ C2[0, a] for some a >

0 . Then the spherical partial sum S̃Mf(0)

converges when M →∞ if and only if F (a) = 0.

Convergence at x 6= 0 was obtained by Kurat-

subo(1998).

In higher dimensions we have the following ex-

plicit example:

Example If n > 3 and F = 1[0,a](|x|), then

S̃Mf(0) = CnM
n−3
2 (cos(2πMa)+O(1/M)) M →∞

Kuratsubo (1999) found some positive results

in higher dimensions. Let φ : [0, a] → R be

a function of bounded variation, set equal to

zero for t > a and Fφ(x) =
∑

m∈Zn φ(|x + m|)
be the associated periodized function.



Theorem K1. If 1 ≤ n ≤ 4 and x 6= 0, then

lim
M

SMf(x) =
∑

|x+m|<a

φ(|x + m|+) + φ(|x−m|−)

2

+
φ(a+) + φ(a−)

2

∑
|x+m|=a

1 (K1)

Theorem K2. If n = 5 and x /∈ Qn (non-

rational coordinates) then K1 holds.

Theorem K3. If n ≥ 6 then (K1) holds for

almost all x ∈ Tn.



I.5 Results on spheres and hyperbolic spaces

Fourier analysis on (M, g) formulated in terms
of the spectral theory of the ∆M , canonically
defined in terms of the metric (gij) in local
coordinates by

∆Mf =
∑
i,j

1
√

g

∂

∂xi
(
√

ggij ∂

∂xj
)

Fourier inversion is especially simple on the
complete simply connected spaces of constant
curvature, namely Rn, Sn, Hn. Rn has already
been discussed in detail.

Fourier analysis on the sphere:

Sn = {x ∈ Rn+1 :
n∑

i=0

x2
i = 1}.

Spectral theory of the Laplacian is given by the
L2 expansion in spherical harmonics:

f(x) =
∞∑

k=0

ckYk(x), ∆Yk+k(k+n−1)Yk = 0, k = 0,1,2, . . .

(I.5.1)



Pointwise convergence: f ∈ L1(Sn) and define
the spherical average (with respect to normal-
ized surface measure dσ

f̄x(r) =
∫
{y:d(y,x)=r}

f(y)dσ(y)

f is said to be piecewise smooth with respect
to x ∈ Sn if r → f̄x(r) has piecewise derivatives
of order [(n + 1)/2]; the differentiability index
is defined as before:

J(f, x) = −1 if r → f̄x(r) is discontinuous, oth-
erwise

J(f ;x) = max{j ≥ 0 : r → f̄x(r) ∈ C(k)}

Theorem I.5.1

n = 1,2 ⇒ (I.5.1) converges to f̄x(0 + 0).

n ≥ 3 ⇒, (I.5.1) is convergent at x ∈ Sn if
and only if J(f ;x) ≥ [(n − 3)/2]. Otherwise
J(f ;x) < (n−5)/2 and (I.5.1) diverges as

∑
|k|≤M ckYk(x) ∼

M(n−5)/2−J(f ;x), M →∞.



Analysis on hyperbolic space: Fourier anal-
ysis on hyperbolic space is effectively discussed
in terms of the representation

Hn = {x ∈ Rn+1 : [x, x] = 1, x0 > 0}

[x, y] = x0y0 −
n∑

j=1

xjyj

The Fourier transform of f ∈ Hn is

f̂(µ, u) = |
Γ(σ + iu)

Γ(u)
|2

∫
Hn

f(y)[y, ξ(u)]−σ−iu dy

and the spherical partial sum is

SMf(x) =
∫ M

0

∫
Sn−1

[x, ξ(u)]−σ−iµf̂(µ, u) du dµ

=
∫ M

0
(
∫
Hn

φn
µ(d(x, y))f(y) dy)dµ

φ′′µ+(n−1)coth rφ′µ+(µ2+σ2)φµ = 0, φ(0) = 1

The spherical mean value, piecewise smooth-
ness and differentiability index are defined as
in the case of the sphere Sn, leading to



Theorem 5.2 Let f be piecewise smooth w.r.t.

x ∈ Hn.

If n = 1,2 then limM SMf(x) = f̄x(0 + 0).

If n ≥ 3 then limM SMf(x) exists if and only if

J(f ;x) ≥ [(n− 3)/2]. If J(f ;x) ≤ (n− 5)/2 we

have divergence: SMf(x) ∼ M(n−5)/2−J(f ;x), M →
∞



II.6 Eigenfunction expansions on balls

In all of the previous situations we had a man-

ifold without boundary (Rn, Tn, Sn, Hn). The

condition for convergence of the Fourier partial

sums depends only on the dimension n = 2α+

2. When we pass to manifolds with bound-

ary we need to impose boundary conditions

(Dirichlet/Neumann/etc) in order to obtained

a well-defined Fourier expansion based on the

Laplace operator. A prototype is the Fourier-

Bessel series which correspond to the Lapla-

ceian of Eucliudean space. In general, the con-

vergence/divergence will depend on a second

parameter β.

In general, we consider the radial Laplace oper-

ator of a Riemannian manifold with symmetry

(surface of revolution):



ds2 = dr2 + g(r)2dθ2

where dθ2 is the metric of the standard sphere

Sn−1 and g is a smooth function with g(0) =

0, g′(0) = 1. The Laplace operator is written

∆g =
∂2

∂r2
+ (n− 1)

g′(r)

g(r)

∂

∂r
+ angular terms

Let V (r) = rn−1g(r) be the volume factor,

λm be the eigenvalues and φm(r) be the ra-

dial eigenfunctions:

φ′′m(r) +
V ′(r)

V (r)
φ′m(r) + λmφm(r) = 0, 0 < r < a

cosβ φm(a) + a sinβ φ′m(a) = 0

where 0 ≤ β < π.

The Fourier expansion of f ∈ L2((0, a);∆(r) dr)

is

f(r) ∼
∑
m

Amφm(r), Am =

∫ a
0 f(r)φm(r)V (r) dr∫ a

0 φm(r)2V (r) dr
(I.6.1)



The problem is defined by two parameters

(α, β) ∈ [−
1

2
,∞)× [0, π)

One may expect that the convergence will de-
pend on the boundary condition. For example
in three dimensions (α = 1/2) the function
f(r) ≡ 1 has a convergent Neumann expansion
(β = π/2) written 1 = 1. But the Dirichlet
boundary condition with a = 1 β = 0, leads to
the series

1 ∼
1

2

∞∑
m=1

(−1)m+1sinmπr

mπr

which is not convergent at r = 0.

More generally, we may expect that the series
(I.6.1) will converge at r = 0 if and only if
the function f has suitable internal smoothness
(depending on α) and satisfies the boundary
condition in a suitably strong sense (depending
on α, β).



Theorem I.6 (Bray and P, 2000) Suppose

that f is piecewise smooth on [0, a].

(i) Convergence in the interior If 0 < r ≤ a,

the series (I.6.1) converges to 1
2f(r−0)+1

2f(r+

0) with no further conditions.

At r = 0 we have the following necessary and

sufficient conditions on the internal smooth-

ness and the boundary smoothness:

(ii) Internal smoothness:

(ii a): If α < 1
2 no further conditions are re-

quired.

(ii b): If k + 1
2 ≤ α < k + 3

2 we require that f

have k continuous derivatives.

(iii) Boundary smoothness:



(iii a): If β = 0 and α < 1
2, then no further

conditions are required.

(iii b): If β = 0 and 2k + 1
2 ≤ α < 2k + 5

2 we

require that f(a) = 0, . . . Lkf(a) = 0

(iii c): If 0 < β < π and α < 3
2, then no further

conditions are required.

(iii d): If 0 < β < π and 2k + 3
2 ≤ α < 2k + 7

2
we require that

cosβfj(a)+(a sinβ)f ′j(a) = 0 fj := Ljf,0 ≤ j ≤ k

Interpretation: With Dirichlet boundary condi-

tions (β = 0) there is no obstruction to con-

vergence when the dimension is less than 3.

Beyond three dimensions, for each additional

four dimensions we need an extra condition at



the boundary to be satisfied in order to have

convergence at the center of the ball.

With Neumann or Robin boundary conditions

(0 < β < π) there is no obstruction to conver-

gence when the dimension is less than 5. Be-

yond five dimensions, for each additional four

dimensions we need an extra condition at the

boundary to be satisfied, in order to have con-

vergence at the center of the ball.



I.7 Rank one symmetric spaces

The sphere Sn and the hyperbolic space Hn are

the prototype examples of rank one symmetric

spaces, of the compact/resp. non compact

type. In each case we can extend the previous

theory of pointwise Fourier inversion.

I.7a Compact case. A compact symmet-

ric space, written X = G/K, is defined by

a simply connected Lie group G with finite

center and an isotropy subgroup K. We ob-

tain a compact Riemanian manifold and set

L = diam(X). Given a reference point o ∈ M

we define the antipodal manifold

Ao = {y ∈ X : d(y, o) = L}

Helgason (1984, p. 167) gives the following

list:



X = Sd Ao = { one point}
X = P d(R) Ao = P d−1(R)

X = P d(C) Ao = P d−2(C)

X = P d(H) Ao = P d−4(C)

X = P16(Cay) Ao = S8

The Laplacian of X is written in terms of a

radial part and a tangential part ∆Sr:

∆X =
∂

∂r2
+

V ′(r)

V (r)

∂

∂r
+∆Sr where V (r) = C sinp(λr) sinq(2λr)

and where λ > 0 is defined so that 2λL is the

largest root.



f ∈ L1(X) is K-invariant with respect to o ∈ X

if it is invariant with respect to the action of

the subgroup K. We can identify f with a func-

tion on [0, L] and define piecewise smoothness

and J(f ; 0) as before

The K-invariant eigenfunctions of ∆X are writ-

ten φj(x). These can be identified with Ja-

cobi polynomials. The Fourier series of a K-

invariant f is written

fM(x) =
∑

j≤M

cjφj(x) (I.7.1)

Theorem I.7.1 (Bray and P, 2000) Let f be

piecewise smooth and K-invariant w.r.t o ∈ X.

Then

(I.7.i) If x 6= o, x /∈ Ao, then limM fM(x) exists.



(I.7.ii) If x = o, then limM fM(x) exists if and
only if J(f ; o) ≥ [(d− 3)/2].

(I.7.iii) If x ∈ Ao then limM fM(x) exists as fol-
lows:

X = Sd requires J(f ; o) ≥ [(d− 3)/2]

X = P d(R) requires J(f ; o) ≥ −1

X = Sd requires J(f ; o) ≥ −1

X = Sd requires J(f ; o) ≥ 0

X = Sd requires J(f ; o) ≥ 2



The proof uses a new theorem on Jacobi poly-
nomials y = P

α,β
n (x), defined as the solutions

of the differential equation

(1−x2)y′′+((β−α)−(α+β+2)x)y′+n(n+α+β+1)y = 0

The expansion of a function is Jacobi series is
written

f(x) ∼
∞∑

n=−0

cnPα,β
n (x), −1 ≤ x ≤ 1

(I.7.2)
Theorem I. 7.2

At an interior point −1 < x < 1, the Jacobi
series (I.7.2) converges with no further condi-
tions.

At the endpoint x = 1, the series (I.7.2) con-
verges if and only if J(f) > α− 3

2

At the endpoint x = −1, (I.7.2) converges if
and only if J(f) > β − 3

2



I.7b Non-compact case A rank one symmet-

ric space of the non-compact type is defined

by a connected semi-simple Lie group G with

finite center and a maximal compact subgroup

K so that X = G/K.

These include real hyperbolic space, complex

hyperbolic space, quaternionic hyperbolic space

and the Cayley plane.

The Fourier transform on X is described in

terms of the radial part of the Laplace operator

(α, β determined by root space dimensions)

L =
d

dt2
+ ((2α + 1)coth t + (2β + 1) tanh t)

d

dt
and the spherical function φλ , which solves

Lφλ+(λ2+ρ2)φλ = 0, u(O) = 1 ρ det. by root space dimensions

The Fourier transform and spherical partial sum

are given by



f̂(λ) =
∫
X

f(x)φ−λ(x) dx

fM(x) =
∫ M

0
f̂(λ)φλ(x)|c(λ)|−2 dλ where

c(λ) = 2ρ−iλ Γ(α + 1)Γ(iλ)

Γ(1
2(ρ + iλ))Γ(1

2(α− β + i + iλ)

Theorem I.7.2 (Bray and P, 1997) Let f be

a piecewise smooth K-invariant function with

respect to O ∈ X. Then

(i) If x 6= O, then limM fM(x) exists.

(ii) limM f(M(O) exists if and only if J(f) ≥
[dim(X)−3

2 ].

The proof uses properties of the Jacobi trans-

form, following Kornwinder (1984).



II.8 Wave equation approach

On any complete Riemannian manifold the Fourier

partial sum SMf(x) can be represented in terms

of the solution of the Cauchy problem for the

wave equation

utt + ∆u = 0, u(0+) = f, ut(0
+) = 0

(I.8.1)

by means of the formula

SMf(x) =
∫ ∞

−∞

sin 2πMt

πt
u(t, x) dt (I.8.2)

For example, on the real line we can write the

Dirichlet formula

SMf(x) =
∫ ∞

−∞

sin 2πMt

πt
f(x + t)

=
1

2

∫ ∞

−∞

sin 2πMt

πt
[f(x + t) + f(x− t)] dt



where we identify the well-known d’Alembert

formula

u(t, x) =
f(x + t) + f(x− t)

2

In the higher dimensional case, formula (I.8.2)

allows one to reduce the analysis to a one-

dimensional problem, where the “angular inte-

grations” are included in u(t, x). For example,

if n = 3, then u(t, x) = (d/dt)[tf̄x(t)].
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