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1. Introduction

Let { X;} be a sequence of independent random variables with £ X; = 0
and EX,L-2 < 00. Put

n n
Sn=> X;, Bp=> EX;.
1=1 1=1

e Lindeberg-Feller:

In order that

B, ? max EX? =0
1<i<n

and ;
Sn/Bn — N(0,1),



it is necessary and sufficient that Lindeberg's condition be satisfied

n
—2 2
Ve>0, Bn ZEXZ ]{‘Xi’><€Bn} — 0
1=1
e The Berry-Esseen inequality (Berry (1941), Esseen (1942)):

If {X;} is sequence of i.i.d. random variables with EX; = 0 and
E|X;|? < 0o, then

sup | Fp(2) — ®(2)| < Cn~V2E| X /o
Z

2 _ 2 _ Sn <
where 0° = EX{ and Fj(2) P(\/W < 2).

e Esseen’s inequality (1945):

n
sup |[F(2) — ®(2)] < OB 23" BIXGP
~ i=1
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e Feller (1968):
up [Faz) — 0(:)

T n
— —3 3
< 6{ByY EX?Ijx >p,) T B’ ) EIXil’Ijx, <))
1=1 1=1



e Non-uniform estimates
— Nagaev (1965):
If {X;}i.i.d with EX; =0 and E|X;|? < oo, then
CE|X|3

Falz) = 9(3)| <

— Bikelis (1966):

- CY " ElX;

) 02)| < SR



2. Stein's Method

A totally new method of normal approximation, introduced by Stein in
1972. It works well not only for independent random variables but also for
dependent variables. Stein’s ideas can be also applied to many other prob-
ability approximations, notably to Poisson, Poisson process, compound
Poisson and binomial approximations.



2.1 The Stein equation

Let Z ~ N(0,1), and let Cp; be the set of continuous and piecewise
continuously differential functions f : R — R with E|f(Z)| < oc.
Stein’s method rests on the following observation.

Lemma 0.2.1 Let W be a real valued random variable. Then W has
a standard normal distribution it is necessary and sufficient that for all

J € Cpq

Ef'(W)=EWf(W). (0.2.1)



Stein's equation:

fllw) —wf(w) = Iy<oy — O(2). (0.2.2)
where z € R! is fixed.

Solution to the equation:

f(w) = /2 / ) Lr<zy — (2)le " 2da

— 00

— _€w2/2 /m[[{xgz} — @(Z)]e_xQ/QdCE

[ QWGwI%/QCD(w)[l —P(2)] ifw < 2z,
= 9 (0.2.3)

V2 20(2)1 - B(w)] fw > 2
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The general Stein equation:
Let h be a real valued measurable function with E|h(Z)| < oo.

f'(w) —wf(w) = h(w) — ER(Z). (0.2.4)

The solution f = f} is given by
fr(w) = ¥/ / w h(z) — Eh(Z)]e* 2da

e / Oo[h(:z;) — EWZ))e™" 2dr. (0.2.5)

w



2.2 Properties of solutions to the Stein equations

Let f, be the solution to (0.2.3).
Lemma 0.2.2 We have

w f.(w) is an increasing function of w, (0.2.6)
wf(w)] <1, |wfz(w) —uf(u)] <1 (0.2.7)
fw)] <1, | fo(w) = fo(v)] <1 (0.2.8)
0 < fo(w) < min(v/2r/4,1/|z2|) (0.2.9)

and

[(wtu) f (wtu) —(w+v) f- (wtv)| < (Jwl+v2r/4)(|ul+[v]) (0.2.10)

for all real w, u, and v.



e For w > 0




For general h,
Lemma 0.2.3 For absolutely continuous function h: R — R
sup [ f,(w)| < min (v/7/2sup [h(w) — ER(Z)|, 2sup [h'(w)]), (0.2.11)
w w w
sup | f7 (w)] < min (2sup [h(w) — EW(Z)|, 4sup |W (w)])  (0.2.12)
w w w

and
sup | f7 (w)] < 2sup |h'(w)]. (0.2.13)
w w



2.3 The main idea of the Stein approach

The Stein equation (0.2.4) is the starting point for normal approxima-
tions. To illustrate the main idea of this approach, let &£1,&9,---, &, be

independent random variables satisfying E¢;, = 0 for each 1 < ¢ < n and
" B =1. Put

W=y g wil=w-—¢g (0.2.14)
1=1

Let i be a measurable function with E|h(Z)| < oo, and f = f;, be the
solution of the Stein equation (0.2.4).
Aim: Estimate

EhW) = EWZ)=Ef'(W)—- EW f(W).



Since &; and W) are independent and E§; = 0 for each 1 <1 < n,
we have

EW f(W ZE@



where

Ki(t) = E&i(Tin<i<gy — Lyg<t<0y)-

o K;(t) >0
./OO K;(t)dt = E¢?

. /OO [t K (t)dt = E|& /2.

—O0
From

it follows that

(0.2.16)

(0.2.17)



Thus, by (0.2.15) and (0.2. 17)

Ef{(W)—EW f(W ZE / Py = W9 L 0K, (t)dt.

(0.2.18)
Equations (0.2.15) and (0.2.18) play a key role in proving a Berry-Esseen
type inequality.

11



2.4 Expectation of smooth functions

Equation (0.2.18) is ready to drive a Berry-Esseen type bound for smooth
function h.

Theorem 0.2.1 For any absolutely continuous function h satisfying
sup, |/ (z)| < ¢

[EWW) — EW(Z)| < 3c1 ) El&). (0.2.19)
1=1

In particular, we have

2 mn
E|W| - \@ <3) 1:E\§@-|3.
Z:
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We note that it is not necessary to assume the existence of finite third
moments in Theorem 0.2.1.

Theorem 0.2.2 Let h be absolutely continuous with |h'| < c¢. Then
ER(W) — ER(Z)| < 4c1(462 + 303), (0.2.20)

where

62 — Z Eg%]{’€1|>1} and ﬂg — Z E|€Z‘3[{‘§z‘§1} (O.Q.Ql)
i=1 i=1
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2.5 The Lindeberg central limit theorem

Although Theorem (0.2.2) does not give a sharp Berry-Esseen bound
directly, one can use a bounded absolutely continuous function to approx-
imate the indicator function and then apply Theorem 0.2.2 to obtain a
weak version of the Berry-Esseen bound which is good enough to recover
the Lindebderg central limit theorem.

Theorem 0.2.3 We have
sup |P(W < 2) — ®(z)| < 2.2(4035 + 335)1/2, (0.2.22)
<

where 39 and (33 are defined in (0.2.21).
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Although Theorem 0.2.3 does not give a sharp Berry-Esseen bound,
it does provide a self-contained proof for the central limit theorem under

Lindeberg's condition.

Let X¢, X9, --,X,, be independent random variables with £X; = (
and EXZ-2 < oo foreach 1 < <mn. Put

n n
n=Y X;and B, =) EX/.
1=1 1=1

To apply Theorem 0.2.3, let

Observe that forany 0 < e < 1

1 — )
Bo+ P3 = ﬁzEXz L1 x> B,) (0.2.24)
=1
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ZE’X\ I{|x,|<By)
ni—

1 n
< —%ZEX I{1x>B,} (0.2.25)

ZBnEX I{eB,<|X/|<By)

= 1
+—Z€BnEX I{X, < Ba)
1
1Z -
2
< e+ ﬁZEX@ ]{|Xz">€Bn}' (0.2.26)
ni=1

If Lindeberg’s condition is satisfied, then (0.2.26) implies 85 + 33 — 0 as

16



n — o0 since ¢ is arbitrary. This shows

sup |P(Sn/Bp < 2) — ®(2)] = 0asn — o
Z

by Theorem 0.2.3.

17



3. Uniform Berry-Esseen Bounds

Assume that &1, &9, - - -, &, are independent random variables with zero
means, finite second moment.

n
> et
1=1
Use the notation in the previous section,
n
W=y &g wil=w-_g
1=1

Ki(t) = E¢i(Tjo<i<gy — Lgi<t<oy):
Let f, be the solution of the Stein equation (0.2.1). Our goal is to use
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Stein’s method to prove the uniform Berry-Esseen inequality

mn
sup [P(W < 2) — ®(2)| < C ) EJ&]°.
“ i—1
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3.1 Bounded random variables

For bounded &;, we are ready to apply (0.2.15) to obtain the following
Berry-Esseen type bound.

Theorem 0.3.1 I |&;| < 9y for 1 < i < n, then
sup |[P(W < z) — ®(2)] < 3.3d (0.3.1)
z

20



Proof. Write f = f.. It follows from (0.2.15) that

and

(0.3.2)
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n

= (1+v21/4)Y {E|&|BE +0.58(4]%)

1=1

< 1.5(1 4 V2r/4) znj El&]°. (0.3.3)
1=1

Noting that the assumption |£;| < &g implies K;(t) = 0 for |t| > dp, we
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have

= JD(VV’fZ,z-—-250).
Combining with (0.3.2) and (0.3.3) gives
P(W <z —2d0g) — P(z — 20)

< B(z) — Dz — 280) + 1.5(1 + V27 /4) z”: E|&;[’
i=1

23



200
< —+4+1.5(1+ v27/4)0g < 3.30 0.3.4
SN (1 4+ V2m/4)dy < 3.309 (0.3.4)

Similarly, we have
n 50 |
3 / PV 4t < VK (t)dt < POW < =+ 26y).
=1

and
P(W < 2+ 26p) — P(z + 2dp) > —3.30 (0.3.5)

This proves (0.3.1) by (0.3.4) and (0.3.5).
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3.2 The concentration inequality approach
Let v =S, E|&|°,
Proposition 0.3.1 We have
Pla < W9 <b) <V2(b—a)+ (1+V2)y (0.3.6)
fora <bandl <1i<n.
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Theorem 0.3.2 We have
sup |[P(W < z) — ®(2)| < 7. (0.3.7)
<
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Remark. One can prove

SUp [P(W < z) — ®(2)]

< A1) (BE e 1y + Bl e <1y):
1=1
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3.3 A randomized concentration inequality
Let Ay and Ay be real-valued Borel measurable functions of (&;,1 <
i < n).

Theorem 0.3.3 We have

P(A < W < Ao)
< E\W(Ay — Ay)| + 2y

+Y {EIG(A — A y)
i—1

+ El§(Ay — Ag )

}
(0.3.8)

where A1 ; and Ay ; are Borel measurable functions of ({;,1 < j <
n, j #1), and
v =) Elg[
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Theorem 0.3.4 Let A = A(&),---,&,) : R — R be a Borel mea-
surable function. Then we have Then we have

sup |[P(W + A < z) — $(2)
: n
< 97+ E|IWA|+ ) El&G(A = Ay, (0.3.9)

1=1
where A; is a measurable function of (§;,1 < j < n,j #1).
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An application to U-statistic

Let X1, Xo,---,X,, be a sequence of independent identically distrib-
uted random variables, and let h(x,y) be a real-valued Borel measurable
symmetric function, i.e., h(x,y) = h(y,x). Define the U-statistic with
the kernel 1 by

2
Un = oDy > h(X;, X))

1<i<y<n
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Theorem 0.3.5 Assume that Eh(X1, X5) = 0and0® = ER?(X], X5) <
0. Let g(x) = Eh(x, X9) and 0% = E¢’(X1). If oy > 0, then

ViUn ) g2

sup P
Zp\ ( 2o,
3
o2 9ExP
(n — 1)1/20y nl/Qa%
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To illustrate the main idea of the proof of Theorem 3.3, consider a =
A1 < b= A9, where a and b are real numbers, and show that

Pla<W <b) < (b—a)+ 2y,
n
where v = Z El&]°.
1=1

Proof. Let 6 = /2,

.

(b—a)—0d for w<a-—2§,

DO —

(b+a) for a—06 <w<b+4,

DO —

flw) = q w—

(b—a)+0  for w>b+0

r
DO —
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and

Then
b—a

‘f’ S T+57 f/ZOJ

fllw) =1 fora—d <w<b+4.
Observe that

EW f(W)

n

= D _EGUFW) = f(W =)

J=1
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1)



where 1); = |§;| min(9, |§;|),

n n
Hy =Y En;, Hy=E|Y n;j— Enjl.
j=1 j=1
It is easy to see that
min(z, y) > & — z°/(4y)
for x > 0 and y > 0. Thus,

> En; = ) E|&|min(6, |¢))
=1

J=1

> Y EIg1 - Bl (40)
j=1

DO | —
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By the Holder inequality,
n
Hy < (Y E€ min(e%, e)? < a.
j=1
Combining the above inequalities yields
Pla <W <b) < 2(Hy + EW f(W))

o+ Bwi . 2
(b—a)+ 2.

+9})

IAIA
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