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Geo stable distributions and geo id distributions were first
introduced by Klebanov, Maniya and Melamed in 1984. Geometric
stable distributions play an important role in heavy-tail modeling
of economic data.

Let F be a distribution in R%. F is called geo id if for
any p € (0,1), there exist a sequence of iid random variables
Z1,Z5,--- and a geo random variable T'(p) (with parameter
p € (0,1)) independent of Z1, Zs, . . . such that the distribution
of 327 Z; is F.

Geo id distributions are id and they are best described in terms
of ch functions. In fact, there is a one-to-one correspondence
between the ch functions of geo id distributions and those of the
id distributions. Namely, a distribution F' is geo id if and only if
its ch function has the form exp(—W¥(£)) with

T(¢) = log(1+®(¢)), €£€R,
where exp(—®) is the ch function of some id distribution.

A rv is called geo id if its distribution function is geo id.
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Construction of geo id rv:

Let Y = (Yi,t > 0) be a Lévy process with ch exponent
® and let 7 be an exponential rv with parameter 1 which is
independent of Y. Then X = Y (7) is a geo id rv with ch
function exp(—W), where W is given by

W(E) = log(1 4+ ®(¢)), ¢ €RY,

Therefore the distribution of X is equal to the 1-potential of the
process Y .

It is also known (see Bertoin's book) that the Lévy measure
of X is given by

u(A) = /OOO t leT"P(Y; € A)dt, A C R*\ {0}.
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Let F' be a distribution in R®, Z1, Zs, ... be independent
rv's with common distribution F'. Let T'(p) represent a geo rv
with parameter p € (0, 1), independent of Zy, Z3,.... The
distribution F' is said to be geo strictly stable if for any p € (0, 1),
there is a constant a = a(p) > 0 such that the distribution of

T(p)
a)_ 7
j=1
is also F'.

A geo strictly stable distribution is also id. There is also a one-
to-one correspondence between the ch functions of geo strictly
stable distributions and those of the strictly stable distributions.
Namely, a distribution F' is geo strictly stable if and only if its ch
function ¥ has the form exp(—W¥(£)) with

W(¢) =log(l + ®(£)), ¢ eRY,

where exp(—®) is the ch function of some strictly stable
distribution.

A rv is called a geo strictly stable rv if its distribution is geo
strictly stable.
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A rv Z is geo strictly a-stable if its ch function is exp(—W),
where W is given by

W(E) = log(1 4+ ®(¢)), ¢ €R%,

with exp(—®) being the ch function of a strictly a-stable rv
(e € (0, 2]).

We will always assume that o € (0, 2].

A Lévy process X = (X;,P.) is called a geo a-stable
process if its ch. exponent ¥ (&) = — log(E, (e ¥17%0))) is
given by

U(€) = log(1 + ®(€)), &e€R,
with exp(—®) being the ch function of some strictly a-stable
distribution.

We will be mainly interested in the rotationally invariant geo
strictly a-stable process, that is in the case when

(€)= log(1 + £|%), ¢ €R%

We will simply call these processes sym geo. «-stable processes.
The sym geo 2-stable process also goes by the name of sym
variance gamma process and it is also used by some researchers
(D. Madan, M. Yor) to study heavy-tailed financial models.
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Despite the applications of geo stable processes in
mathematical finance and other fields, there has not been much
study about the potential theory of these processes.

For any o € (0, 2], the function
¢(A) =log(1+ A*?), XA>0

is a complete Bernstein function. An increasing Lévy process
S = (S : t > 0) with the Laplace exponent ¢ given above is
called a geo a/2-stable subordinator.

Let S = (St : t > 0) be a geo a/2-stable subordinator
and let Y = (Y; : ¢ > 0) be a BM in R* with generator
A. If Y and S are independent, then the subordinate process

Y = (Y; : t > 0) defined by
Y = X(St)v t > 0,

is a sym geo «-stable process. This construction of sym geo
a-stable processes will play an important role in our argument.
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Assume that S = (S; : t > 0) is a geo «/2-stable
subordinator. Its Laplace exponent is given by

d(N) = log(1 + A*?), X > 0.

The function ¢ above can be written in the form

s = [ T = e Mud), A0

for some o-finite measure p on (0, co) (the Lévy measure of
S). Since ¢ is complete Bernstein, the Lévy measure p has a
complete monotone density p(t).

The potential distribution of the subordinator S is defined by

U(x) = E/O L(s,efo,a]) dt ,

and its Laplace transform is given by

1
LU(N) = = :
N =300 T Toa(l + xe7)
Since lim )00 ¢(A) = o0, we must have p((0,00)) = oo.

Using this one can show that the potential measure U has a
density u which is completely monotone on (0, c0).
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A function [ : (0, c0) — (0, co) is said to be slowly varying
at co (resp. at 0+ ) if for every A > 0

l(Az)
I(z)

lim 1, x — oco(resp. x — 0+.

A function f : (0, c0) — (0, co) is said to be slowly varying

at oo (resp. at O+ ) if for every A > 0, the ratio % converges

to a positive number as x — oo (resp x — 0+).

If a function f is slowly varying at infinity (resp at 0+), then
there is a real number p such that

fO) _
()

for every A > 0.

lim A,z — oco(resp. x — 0+)
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Karamata’s Tauberian theorem

Let 1 be slowly varying at oo (resp. at 0+) and p > 0.
The following are equivalent:

(i) As ¢ — oo (resp. € — 0+)

U(z) ~ z"1(z)/T(1 + p);

(ii) As A — oo (resp. X — 0+)

LUZ) ~ APL(1/N).

Karamata’s Monotone Density Theorem. Suppose that
dU(z) = u(x)dx, where u is monotone. If there is a real

number p and a function U that is slowly varying at oo (resp
at 0+ ) such that

U(x) ~ z°l(z), x — oco(resp. © — 0+),

then

w(z) ~ pz’ 'l(z), x — oo resp. x — 0+)
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de Haan’s Tauberian Theorem. If [ is slowly varying at
oo (resp. at 0+ ), ¢ > 0, the following are equivalent:

(i) As ¢ — oo (resp. € — 0+)

U(Ax) — U(x)
[(x)

— clog A, VA > 0.

(ii) As x — oo (resp. x — 0+)
LU(55) — LU(3)
I(x)

— clog A, VX > 0.

de Haan’s Monotone Density Theorem. Let dU(z) =
u(x)dx with uw monotone, and 1 slowly varying at co (resp. at
04 ). Assume that ¢ > 0. Then the following are equivalent:

(i) As x — oo (resp. © — 0+)

U(Ax) — U(x)
[(x)

=clog A, VX >O0.

(ii) As x — oo (resp. © — 0+)

u(z) ~ ez ().
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Theorem. For any o € (0, 2], we have

2

az(log )2’

u(x) ~ x— 0+4.

Proof. Since

LU (&) — LU(5 2
() () — —logt, Vt>O0
(log \)—2 o

as A — 0, we have by de Haan'’s Tauberian theorem that

U(tx) — U 2
(tz) (x)—>—logt, t>0
(log x)—2 e

as £ — 0. Now we can apply the monotone density theorem to

get that
2

ax(log x)?

u(x) ~

as ¢ — 0.
Theorem. For any o € (0, 2], we have

1 a/2—1

Wz , T —> OO

u(x) ~
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The distribution F, /5 of 51 is absolutely continuous and the
density f, /2 is decreasing on (0, co). When a = 2 we have

fi(x) =¢e %, =z >0.

Theorem. For any o € (0, 2), we have

1
a/2—-1
f /2(33) F(a/Z)x r — 0+

and

faje(x) ~27l(1 + %) Sin(%)m_l_%, T — 00.
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When o = 2, the Lévy density of S is given by
p(t) =t'e?, t>o0.

For o € (0, 2), we have

o
,LL(CE) — _(1 - Fa/2($))7 z > 0.
2x
Hence we have

Theorem. For any o € (0, 2], we have

o
plx) ~—, = —0+4.
2T

By considering the “dual” subordinator of S and using the
Tauberian theorem and the monotone density theorem we can get
the following

Theorem. For any o € (0, 2), we have

N & —a/2—1
u@) 2 (1 — oz/2)m ’

r — OQ.
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d>3 o€ (0,2]
Y = (Y;, t > 0): BM in R* with generator A.

S = (St t > 0): geometric a/2-stable subordinator with
Laplace exponent log(1 + A\*/?%).

Y and S: independent.
Xt = Y (St): sym. geometric a-stable process.
u: the potential density of S.

The potential density of X is given by

G(z) = /000(471'15)_d/2 exp (—@> u(t) dt,

4t

Theorem. For any o € (0, 2], we have

I'(d/2)
G(.:U)N 7o p 5 1 |£B|—>0
2am?/?|z|*log” o
and .
1 I'(%=
G(z) ~ G )|x|a—d |z| — oo.

md/220 T(2)
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Recall w(t) is the Lévy density of S. The jumping function
of X is given by J(z,y) = J(y — x) with

||

J(z) = %/Ooo(zmw—d/? exp(——-)u(t)dt.

We also have
1 o0
J(x) = 5/ t_le_tpa(t, 0, x)dt
0

where p,, is the density of a sym. «-stable process in RY.

Theorem. For any o € (0, 2] we have

T'(d/2)

alz|d’

J(x) ~

|lz| — 0.

Theorem. For any o € (0, 2) we have

a T2

J(x) ~ |74 |z = oo.
@) ~ grappg gl e
and when o« = 2 we have
_d _d—1 eIl
J(x) ~2 21 2 —=, |z] = o0
|x|T
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Let go(t, x,y) = qa(t,y — x) be the transition density of
X . Then we have

Theorem. For a € (0, 2) we have

a2 sin O (LS (g)
Go(1l, ) ~ 2d 2 2 || “ |z| = .
w2t

For oo = 2 we have

d—1 e @l

d
g2(1, @) ~ 2 2w 2

T |z| — oo.

|gg|T

Theorem.  Suppose @ € (0,2). There exist positive
constants C1 and Cy such that for all z,y € R? and t <
1AL

2c0”
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a € (0,2], ¢V(y) = d(y) = log(1 + y*/?), ¢ (y) =
(" V(y)) for n > 1. ™ is a complete Bernstein function.

Let S = (St(") : t > 0) be a subordinator with Laplace
exponent ¢'™. pu(™: The Lévy measure of S(™. «(™: the
potential density of S{™.

For convenience, we introduce the following:
In(y) =loglog---logy, n times

and
Ln(y) = li(y)l2(y) -+ - la(y)-

Theorem For o € (0, 2],

™ (z) ~ ° r — 0+.
azLn-1() ()
and
u(n)(a:) ~ L 2@ .
L((a/2)") ’
For a € (0,2)
2 n
,u(n)(:r;) ~ (a/2) r — 00.

x(/2)"+17 (1 — (a/2)n)’
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Y = (Y; : t > 0): BMin RL S™: the subordinator
with Laplace exponent ¢'™ as before. Y and S(™ independent.
Define X = (X : ¢t > 0) by X = Y (5™).

G (z,y) = G (y — z): the Green function of X ™.
J™W(z,y) = J™(y — x): the jumping function of X (.
Theorem For o € (0, 2] and n > 1, we have

I'(d/2)

G(n) ~ !
() ~ S Lo (1 oG

|lz| — 0

and as |x| — oo,

n—1
G™(z) ~ Clz|* P77 2] = oo,
where

L L((d— a(a/2)"")/2)
1d/290(a/2)7—1 I'((a/2)2?) '
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Now suppose that X a transient sym Lévy process on R?
with a potential density G(x,y) = G(y — x) such that G is a
positive and decreasing function on [0, c0) and G(0) = oco. Let

Cap denote the (0-order) capacity with respect to X. Then we
can show that

Theorem. There exist positive constants c1 < co such that

: < Cap(B(0, 1)) < i
> Lap ) > .

c1Tr

Specialize to sym iterated geo stable processes we get

Corollary. For any o € (0,2] and n > 1 we have

_ 1
Cap(B(0,7)) < rl.(=), 7 — 0.
T

In particular, for n = 1, we have

1

T
T

Cap(B(0, 7)) < r*log r — 0.

and for n = 2,

_ 1
Cap(B(0,r)) < r*loglog—, r — 0.
r
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Now suppose that X a transient sym Lévy process on R?
with a potential density G(x,y) = G(y — x) such that G is a
positive and decreasing function on [0, co) and G(0) = co. We
further assume that G : (0, 00) — (0, c0) is regularly varying
at O+. Then we can show that

Prop. There exists positive constant c such that for any
r € (0,1/2) we have

c G(ly)dy < inf E,7g.,
/B(o,r/e) () z€B(0,r/6) B(0m)

< sup Brmon < [ GluDdy.
z€B(0,r) B(0,r)

Specialize to the case of sym iterated geo stable processes we
get

Corollary. For any o € (0, 2] and n > 1 we have

/1 (1) < inf E
Ci1/tn\— 11 z r
! r° — zeB(0,r/6) TB(0,r)

1
S Sup EZTB(O,T) S C2/ln(_)-
z€B(0,r) r
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Now we assume o € (0,2] when n = 1, and a € (0, 2)
forn > 2.

Theorem. For any r € (0,1/2), there exists a constant
C' > 0 such that for any zg € R? and any nonnegative bounded
function w in R which is harmonic with respect to X (n) in,
B(zg, ) we have

u(z) < Culy), =z,y € B(z9,7/2).

Note that the constant C' above depends on r. We would
like to get rid of this dependence on 7.

Theorem. Let D be a domain in R® and K be a compact
subset of D. Then there exists C = C(D, K) > 0 such that
for any nonnegative function u in R? which is harmonic with
respect to X in D we have

u(z) < Cu(y), =,y € K.
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Future work:

Fine potential theoretic properties of GS processes.
sample paths properties of GS processes.

heat kernel estimates and parabolic Harnack inequalities

Potential theory of killed GS processes
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