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1 Some Results of Percolation

Hammelsley first studied the model of percolation around 1957.
Let Z = {−∞, . . . ,−1, 0, 1, 2, . . . ,+∞} and Zd = {x = (x1, x2, . . . , xd), xi ∈ Z, i =
1, . . . , d}.
The distance of a pair of points x, y is defined by

l(x, y) =
d∑

i=1

| xi − yi | .

Now add a bond ex,y between x and y if l(x, y) = 1. Denote Ed = {bond} and define
the bond-index sequence of i.i.d random variables X(e) = 1(open) with probability p,
0 (closed) with probability 1− p.
The sample space of percolation is Ω = {0, 1}Ed

.
An open path is an self-avoiding sequence from u to v:u = x0, e1, x1, e2, . . . , en−1, xn =
v, with all the edges open. We write u ↔ v if there is at least an open path from
u to v. Now we define the open Cluster containing x as C(x) = {y ∈ Zd : x ↔ y}
and θ(p) = Pp(| C(0) |= ∞) as the critical probability of percolation model. Since the
lattice is translation invariant, it follows that the above definition is well defined.
Let pc = pc(d) = sup{p : θ(p) = 0} be the critical point of the percolation model.

Theorem 1.1 (Hammersley). 0 < pc(d) < 1.

Proof. Use some combinatorial estimations, it is easy to get the upper bound. The
lower bound comes from the dual property of lattice Ld.

1.1 The FKG Inequality

To state the FKG inequality we first define a partial order ” ≤ ” on Ω by ω ≤ ω
′

if
ω(e) ≤ ω(e)

′
for all e ∈ Ed. An event A is said to be increasing if

IA(ω) ≤ IA(ω′) for all ω ≤ ω′.

Note that the even {| C(0) |= ∞} is an increasing event.

Theorem 1.2 (FKG). If both A and B are increasing events then

P (AB) ≥ P (A)P (B).

1.2 The Russo’s Formula

Let A be an event, e is said to be pivotal for(A,ω) if IA(ω) 6= IA(ω′), ω′(e) = 1− ω(e)
and ω′(f) = ω(f) for all f ∈ Ed, f 6= e.
Example: Find some pivotal edges of the event {there is at least one left-right crossing
and one top-bottom crossing}

Theorem 1.3. Let A be an increasing even depending on only finite edges of Ed, then

dPp(A)
dp

= EpN

where N is the number of pivotal edges of A.
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1.3 Estimating the tail probability of the size of open cluster

Theorem 1.4. If p < pc,then there exist constants C1(p), C2(p) so that

P (| C(0) |≥ n) ≤ C1(p) exp(−C2(p)n)

Theorem 1.5. If p > pc, there exist C1(p) and C2(p), so that

P (∞ >| C(0) |≥ n) ≤ C1(p) exp(−C2(p)n
d−1

d )

Theorem 1.6. If p = pc, d = 2, Ppc(| C(0) |≥ n) ≤ n−δ

Open Problem: If p = pc, d ≥ 2, then θ(pc, d) = 0

1.4 oriented percolation

Consider the percolation on oriented lattices an in particular on the ”north-east” lattice−→
L d obtained by oriented each edge of Ld in the direction of increasing coordinate-value.
Denote {u → v} as the event that there is an oriented open path. Let Ω(0,0)

∞ be the event
that there is at least an infinite oriented open path from (0, 0) to ∞. θ(p) = P (Ω0,0

∞ )
is the critical probability of oriented percolation. Let pc = sup{p : θ(p) = 0} then
0 < −→p c < 1.

In the case of d = 2, rotate the oriented lattice by 45◦. For p > pc, let ξ
(0,0)
n = {x :

(0, 0) → (x, n)} and rn = sup{ξ0,0
n }

Theorem 1.7. If p < pc, then limn→∞
rn
n = α(p) a.s and in L1.

Proof. Subadditive method
Conjecture (Liggett):

dα(p)
dp

→∞, p ↓ pc.

2 First Passage Percolation

Consider percolation on Zd, for each e ∈ Ed, we allocate a random time T (e),which
we think of as being the time required for fluid to flow along e; we assume that the
family(T (e) : e ∈ Ed) of time coordinates contains independent non-negative random
variables with common distribution function F and Et(e) < ∞. For any path π we
define the passage time T (π) by

T (π) = Σe∈πT (e).

The first passage time from u to v is given by

T (u, v) = inf{T (π), πis a path form u to v},

or in a more general form

T (A,B) = inf{T (π) : π is a path from A to B}
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for any two subsets of vertices of Zd.
Let

a0,n = T ((0, 0, . . . , 0), (n, 0, . . . , 0)),

b0,n = T ((0, 0, . . . , 0),Hn),

where Hn = {(n, u2, . . . , ud), ui ∈ Z} is the hyperplane with the first coordinate fixed
as n. Let

c0,n = T ((0, 0, . . . , 0), ∂B(n))

with B(n) = [−n, n]d and ∂B(n) = {x ∈ Zd, | xi = n for some i |}.

Theorem 2.1. If Et(e) < ∞, then

lim
n→∞

a0,n

n
= lim

n→∞

b0,n

n
= lim

n→∞

c0,n

n
= µa.s and L1

Sketch of proof. Kingman’s subadditive argument(Liggett’s version):
{Xm,n; 0 < m < n} is a family of random variables such that

(1)
X0,n ≤ X0,m + Xm,n(subadditive);

(2)
Xnk,(n+1)k

is ergodic for each k;

(3)
Xm+1,m+k+1

has the same distribution as Xm,m+k for all m and k.

(4)
EX+

0,1 < ∞, EX0,n ≥ −cn

for some constant c.

Then
lim

n→∞

X0,n

n
= γ a.s and L1.

Let am,n = T ((m, 0, . . . , 0), (n, 0, . . . , 0)) it is convenient to find a new open path from
(0, 0) to (n, 0) by combining both segments of the open paths from (0, 0) to (m,n) and
from (m,n) to (n, 0), so we get the subadditivity. Using mixing and the independent
properties of the percolation and random times one can show that Xnk,(n+1)k is ergodic.
The third condition holds for the translation invariance and the independence of the
lattice. EX0,1 ≤ Et(0) < ∞ and EX0,n ≥ 0. Then

lim
n→∞

a0,n

n
= µ(F )

for some constant.
But we don’t know any information about the limit µ(F ).

Theorem 2.2 (Kesten). If F (0) < pc, then µ(F ) > 0. If F (0) ≥ pc, then µ(F ) = 0.
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