
Theorem 1 (Kesten,1986) If F (0) < p c, then µ(F ) > 0;

If F (0) > p c, then µ(F ) = 0.

To prove this theorem, we need the following lemma.

Lemma 1 If F (0) < p c, there exist constants c1, c1, c3 > 0 such that

P (There exists a self-avoiding path γ from 0 that contains

at least n bonds but T (γ) 6 c1n) 6 c2e
−c3n.

We prove the theorem with the lemma first, and then we give the proof of the

lemma.

Proof : For F (0) > pc, we consider the following percolation:

e =

{

open, t(e) = 0,

closed, t(e) > 0.

Let C(0) be the open cluster containing the origin. Since F (0) > p c, we have

P (C(0) = ∞) > 0. That is to say, with a positive probability, we have C0,n = 0 for

all n ∈ N. Therefore,

P
(

lim
n→∞

C0,n

n
= 0

)

> 0.

But we have

lim
n→∞

C0,n

n
= µ a.s. ,

we can conclude that µ = 0.

For F (0) < p c, consider

Eθ0,n =
∑

i

P (θ0,n > i), θ = a, b, c.

With lemma 1 we have

P (θ0,n 6 c1n)

6P (There is a self-avoiding path γ that contains

at least n bonds satisfying T (γ) 6 c1n)

6c2 exp(−c3n) <
1

2
,

1



for large n.

Consequently, P (θ0,n > c1n) > 1/2. Therefore, Eθ0,n > c1n/2,

µ = lim
n→∞

Eθ0,n

n
>

1

2
c1 > 0.

The case F (0) = pc results from the continuity.

Now we prove lemma 1.

Proof : We use the method of renormalization.

(i) Assume F (x) = p1(x>0) +(1−p)1(x>1). Here we only consider the case d = 3.

For integer k > 1, u ∈ Z
3, consider the cube

Bk(u) =

3
∏

i=1

[kui, kui + k)

with lower left hand corner at ku.

For each Bk(u), it has at most 26 neighbor cubes, where we count its diagonal

neighbors.

Given a path γ, we say a cube Bk(u) is good if γ ∩ Bk(u) 6= ∅.

For each good cube Bk(u), we say it is excellent if ∃ e ∈ γ ∩ Bk(u) + [−k, k]3

such that t(e) = 1. Otherwise we say it is bad.

Let Q be the number of good cubes. Since γ contains n edges, we get n(k+1)−d 6

Q 6 n.

Note that these good cubes are connected. If T (γ) 6 c1n for c1 < (k + 1)−d/54,

there are at most Q/2 excellent cubes among the Q good cubes and there are at least

Q/2 bad cubes. Of these bad cubes, we consider the bigger cubes Bk(u) + [−k, k]3.

At least Q/54 of them are disjoint.

Now we estimate the probability of a bad cube. See the figure in the next page.

We have

P (bad cube) = P (A) 6 kdc4 exp(−c5k) 6 c6 exp(−c7k).
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where ci is independent of k. Therefore,

P (∃ γ with |γ| = n, T (γ) 6 c1n)

6
∑

Q>n(k+1)−d

(26)Q
∑

m>Q/54

(

Q

m

)

[

P (bad cube)
]m

6
∑

Q>n(k+1)−d

(26)Q · 2Q · [c6 exp(−c7k)]Q/54

6
∑

Q>n(k+1)−d

exp(Q log 52 +
Q

2
log c6 + log Q − c7k ·

Q

54
)

6 c8 exp(−c9n).

when we take k large enough.

(ii) For any distribution F with F (0) < pc, there exists η such that

P (t(e) < η) < pc,

P (t(e) > η) > 1 − pc.

The same argument as (i) shows that

P (∃ γ with T (γ) 6 c1n) 6 c8 exp(−c9n).

This is the proof of lemma 1.

Now we give an alternative proof of lemma 1. We will use the following lemma.

Lemma 2 P (There exists a self-avoiding path γ from v to w

that passes v = v1, · · ·vl = w with T (γ) 6 x)

6 P
(

l−1
∑

i=1

T ′(vi, vi+1) < x
)

.

where T ′(vi, vi+1) are independent and T ′(vi, vi+1)
d
= T (vi, vi+1).
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This lemma can be proved with BK Inequality.

Proof of lemma 1 from lemma 2:

We can find a sequence of points a0, a1, · · · , aQ along the path where there exists

k = k(i) such that ai, ai+1 ∈ Bk(u). Then

P (∃ γ with T (γ) 6 cn, |γ| = n)

6
∑

Q>n(k+1)−d

[

∑

a1,··· ,aQ

P
(

Q−1
∑

i=0

T (ai, ai+1) 6 c1n
)]

6
∑

Q>n(k+1)−d

[

∑

a1,··· ,aQ

P
(

Q−1
∑

i=0

T ′(ai, ai+1) 6 c1n
)]

(Lemma 2)

6 eξc1n
∑

Q>n(k+1)−d

[

∑

a1,··· ,aQ

Q−1
∏

i=0

Ee−ξT ′(ai,ai+1)
]

6 eξc1n
∑

Q>n(k+1)−d

[

∑

a∈B(k)

Ee−ξT ′(0,a)
]Q

6 eξc1n
∑

Q>n(k+1)−d

(1

2

)Q
(∗)

6 eξc1n
(1

2

)n(k+1)−d
−1

6 c2 exp(−c3n).

The last 6 we take ξ small enough that eξc1(1/2)(k+1)−d

< 1.
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