Theorem 1 (Kesten,1986) If F(0) <p ., then pu(F) > 0;
If F(0)>=p, then u(F)=0.
To prove this theorem, we need the following lemma.

Lemma 1 If F(0) < p ., there exist constants ¢y, ¢1, c3 > 0 such that

P(There exists a self-avoiding path « from 0 that contains
at least n bonds but T'(v) < ¢1n) < cpe” 3",

We prove the theorem with the lemma first, and then we give the proof of the
lemma.

Proof : For F(0) > p., we consider the following percolation:

. { open,  t(e)

—0,
closed, t(e) > 0.

Let C'(0) be the open cluster containing the origin. Since F(0) > p ., we have
P(C(0) = 00) > 0. That is to say, with a positive probability, we have Cy,, = 0 for
all n € N. Therefore,

P( lim Con _ 0) > 0.

n—oo M

But we have

. CO,n
lim —— =pu a.s. ,
n—oo n

we can conclude that p = 0.
For F(0) < p ., consider

Eon =Y Plbon>1i), 0=abc
With lemma 1 we have
P(eo’n < cln)
< P(There is a self-avoiding path 7 that contains
at least n bonds satisfying T'() < ¢1n)

Legexp(—ezn) <

Y

N —



for large n.
Consequently, P(6y,, > cin) > 1/2. Therefore, E6y, > cin/2,
Eby, _ 1

n= lim > —c > 0.
n—oo n 2

The case F'(0) = p. results from the continuity.

Now we prove lemma 1.

Proof: We use the method of renormalization.

(i) Assume F(z) = pl(z>0)+ (1 —p)1l>1). Here we only consider the case d = 3.
For integer k > 1, u € Z3, consider the cube

3
Bi(u) =[] [kui, ku; + k)
i=1
with lower left hand corner at ku.

For each By(u), it has at most 26 neighbor cubes, where we count its diagonal
neighbors.

Given a path v, we say a cube By(u) is good if v N By(u) # 0.

For each good cube By(u), we say it is excellent if 3 e € v N By(u) + [k, k3
such that t(e) = 1. Otherwise we say it is bad.

Let Q be the number of good cubes. Since ~y contains n edges, we get n(k+1)~9 <
Q < n.

Note that these good cubes are connected. If T(y) < ¢in for ¢; < (k+ 1)7%/54,
there are at most /2 excellent cubes among the ) good cubes and there are at least
Q/2 bad cubes. Of these bad cubes, we consider the bigger cubes By(u) + [k, k>
At least (/54 of them are disjoint.

Now we estimate the probability of a bad cube. See the figure in the next page.

We have

P(bad cube) = P(A) < k% exp(—csk) < cgexp(—crk).
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where ¢; is independent of k. Therefore,

P(3 vy with [y| =n, T(7) < an)

< Z (26)9 Z (g) [P(bad cube)]™

Q>n(k+1)—d m>Q/54

< ) (260229 [egexp(—crk)] ¥/
Q2n(k+1)~4

S Z exp(Q log 52 + %loch +1log Q — c7k - 5%)
Q>n(k+1)—9

< cgexp(—con).

when we take k large enough.
(ii) For any distribution F' with F'(0) < p., there exists n such that

P(t(e) <n) < pe,
P(t(e) = n) > 1= pe.

The same argument as (i) shows that
P(3 v with T() < e1n) < cgexp(—con).

This is the proof of lemma 1.
Now we give an alternative proof of lemma 1. We will use the following lemma.
Lemma 2 P(There exists a self-avoiding path ~ from v to w

that passes v = vy, v, = w with T'(y) < z)
-1

< P(Z T/(Uiavi—l—l) < .TL’)
=1
L3

where T"(v;, v;41) are independent and T" (v, v;11) = T(v;, Vig1).

3



This lemma can be proved with BK Inequality.

Proof of lemma 1 from lemma 2:

We can find a sequence of points ag, a1, - - - , ag along the path where there exists

k = k(i) such that a;, a;+1 € Bg(u). Then

P(3 v with T'(y) < cen, |y| =n)

Q-1
< Z Z Z T(a;,air1) cln)}
e

Q>n(k+1)—¢ a1, i=0
Q-1

S Z [ Z P( T,(aia az’+1) < cln)}
Q=n(k+1)—4 a1,,0qQ i=0

Q-1
<6561n Z [ Z H Ee—ﬁT’(ai,ai—l—l)}

Q>n(k+1)—4 a1,,aqQ =0

< eﬁcln Z Z Ee —£T7(0,a)

Q>n(k+1)—¢ aeB(k

1
fein - Q
<eor > (5)
Qzn(lt1)-
< escln(l)n(k—kl)*d_

1
3 < ez exp(—czn).

The last < we take ¢ small enough that e (1/2)*+D)7" < 1.

(Lemma 2)



