
Next we will discuss two important tails:{
θ0,n ≥ n(µ + ε) right tail
θ0.n ≤ n(µ− ε) left tail

θ = a, b, c or φ,where a0,n,b0,n and c0,n has been defined,while φ0,n,which is called
”Face-face first-passage time”,is defined as follows:

φ0,n :=inf{T (γ):γ is a path from A to B, γ ⊆ [0, n]d}.
where A:={0}×[0, n]d−1, B:={n}×[0, n]d−1.
The examples of d = 2 and d = 3 can easily be imagined.
Theorem 1. minimum-cut=maximum flow.
Grimmett and Kesten (1984,PTRF) proved the following:

lim
n−→∞

φ0,n

n
= µ a.s. and in L1.

First we check the left tail.
Theorem 2.(Kesten,1986) Assume that for some r > 0, Eert(e) < ∞ and

F (0) < pc, then for all ε > 0, there exists constants c1 and c2, such that

P (θ0,n ≤ n(µ− ε)) ≤ c1 exp(−c2n).

θ = a, b, c or φ.
Remark. The assumption ”Eert(e) < ∞” is not in Kesten(1986). In that paper it

just assumed ”Et(e) < ∞”, but given the assumption ”Eert(e) < ∞”, the proof will be
much easier.

Proof of Theorem 2 for θ = c

P (c0,n ≤ n(µ− ε)) ≤ P (cM (a0) + cM (a1) + . . . + cM (aQ) ≤ n(µ− ε))
≤ P (c′M (a0) + c′M (a1) + . . . + c′M (aQ−1) ≤ n(µ− ε)) (by Lemma 2)

≤ P (
Q−1∑
i=0

c′M (ai) ≤ QM(µ− ε))

Since lim
M−→∞

c0,M

M = µ. Take M, such that Ec′0,M ≥ M(µ− ε
2).

Q−1∑
i=0

[c′M (ai)− Ec′M (ai)] ≤ QM(µ− ε)−QM(µ− ε

2
) = −QM(

ε

2
).

Let Xi = c′M (ai)− Ec′M (ai), then EXi = 0,
1∫
0

eβxdFX1(x) < ∞.

For β = β(M,F, d). By a standard large deviation result, ∃c1, c2, such that

P (c0,n ≤ n(µ− ε)) ≤ P (
Q∑

i=1

Xi ≤ −QM(
ε

2
)) ≤ c1 exp(−c2n).

Remark. The proof of Theorem 2 for θ = b or φ is quite easy, while the proof of
it for θ = a is relatively difficult.
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Theorem 3. For all ε > 0, if F (0) < pc, then

lim
n−→∞

− 1
n

logP (θ0,n ≤ n(µ− ε)) = α(ε, F ) > 0.

θ = a, b, c or φ.

Proof of Theorem 3 for θ = a

For any n ∈ Z+, let Xn := − log P (a0,n ≤ n(µ− ε)).
for all m, n ∈ Z+, note that ”a0,m ≤ m(µ− ε)” and ”am,m+n ≤ n(µ− ε)” are both

decreasing events. So using FKG inequality, we get

P (a0,m ≤ m(µ− ε))P (am,m+n ≤ n(µ− ε)) ≤ P (a0,m ≤ m(µ− ε), am,m+n ≤ n(µ− ε)).

But obviously, P (am,m+n ≤ n(µ − ε)) = P (a0,n ≤ n(µ − ε)), {a0,m ≤ m(µ −
ε), am,m+n ≤ n(µ− ε)} j {a0,m+n ≤ (m + n)(µ− ε)}.

So we get

P (a0,m ≤ m(µ− ε))P (a0,n ≤ n(µ− ε)) ≤ P (a0,m+n ≤ (m + n)(µ− ε)).

It equals to

− log P (a0,m+n ≤ (m+n)(µ−ε)) ≤ [− log P (a0,m ≤ m(µ−ε))]+[− log P (a0,n ≤ n(µ−ε))].

Thus Xm+n ≤ Xm + Xn holds for any m,n ∈ Z+. Use a small analytical trick we
can easily get lim

n−→∞
Xn
n exists, so

lim
n−→∞

− 1
n

logP (a0, n ≤ n(µ− ε)) = α(ε, F ) > 0.

Remark. When θ = b, c or φ, the proof of Theorem 3 is quite similar.
Next we will check the right tail.
Theorem 4.(Kesten,1986) If F (0) < pc and Eert(e) < ∞ for some r, then for all

ε > 0, there exist c1 and c2, such that

P (θ0,n ≥ n(µ + ε)) ≤ c1 exp(−c2n).

A general case is as follows:
Theorem 5.(Chow & Zhang,2003,Annals of Applied Probability,1601-

1614) If F (0) < pc and Eert(e) < ∞ for some r, then for all ε > 0, there exist c1 and
c2, such that

P (θ0,n ≥ n(µ + ε)) ≤ c1 exp(−c2n
d).

To prove this theorem, we need to prove some lemmas first.
Lemma 3. Define

Tl,k,m := inf{t(γ) : γ is a path from (l, 0, 0) to (k, 0, 0), and γ j [0, k]×[−m,m]2}.

then
lim

m−→∞

T0,m,m

m
= µ a.s. and in L1.
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Lemma 4. If F (0) < pc, ε > 0 and E exp(rt(e)) < ∞ for some r > 0. Then there
exists a constant η > 0, such that

P (T0,k,m ≥ k(µ + ε)) ≤ exp(−ηk) for all k ≥ m.

We will take several steps to prove Theorem 5.
Step 1, Proof of Lemma 3.

Define

Tm,n(k) := inf{t(γ) : γ is a path from (m, 0, 0) to (n, 0, 0), and γ j [m−k, n+k]×Zd−1}.

By a standard subadditive argument,

lim
n−→∞

t0,n(k)
n

= µ(k) = inf
n

Et0,n(k)
n

a.s. and in L1.

∵ ∀n, t0,n(k) ↓ as k ↑,
∴ µ(k) ↓ as k ↑.
For fixed k and ω, let a0,n(ω) := lim

k−→∞
t0,n(k)(ω), µ := lim

n−→∞
a0,n

n , then obviously,

a0,n ≤ t0,n(k), µ ≤ µ(k).
Fix n, ∀ε > 0, take k large such that

µ(k) ≤ Et0,n(k)
n

≤ Ea0,n

n
+ ε ≤ µ + ε.

So for k large, we have µ ≤ µ(k) ≤ µ + ε, which is sufficient to get lim
n−→∞

µ(k) = µ.

The next thing for us to do is to compare t0,k(0) and T0,k,m.
Let γ j [0, n]× Zd−1 be a path from (0,0,0) to (n,0,0) with T (γ) = t0,n(0). Define

hn(γ) := max
2≤i≤3

{|mi| : (m1,m2,m3) ∈ γ},

and
hn := max{hn(γ) : γ is a route for t0,n}.

It is known(see Theorem 8.15 in Smythe and Wierman(1978)) that

lim sup
n−→∞

hn

n
≤ 1 almost surely. (∗)

Let Hn := {hn
n ≤ 1}. Then

Et0,m(0) ≥ E(t0,m(0);Hm) = E(T0,m,m;Hm) = E(T0,m,m)− E(T0,m,m;Hc
m),

T0,m,m ≤
∑
e∈γ

t(e).

where γ is the path from (0,0,0) to (m,0,0) along the first coordinate.
By Cauchy-Schwarz inequality, we have:

[E(T0,m,m;Hc
m)

m ]2 ≤ E(

∑
e∈γ

t(e)

m )2 · P (Hc
m).

By (*) we have P (Hc
m) → 0(m →∞). So lim

m→∞
E(T0,m,m;Hc

m)
m = 0.
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Then µ = lim
m→∞

Et0,m(0)
m ≥ lim

m→∞
ET0,m,m

m .

Note that lim
m→∞

ET0,m,m

m ≥ lim
m→∞

Et0,m(0)
m ≥ µ. So Lemma 3 follows.

Remark. For M > 0, let P (0 ≤ t(e) ≤ M) = δ > 0.
Let A(k) be the event that all those 2k edges from (-k,0,0) to (0,0,0) and from

(n,0,0) to (n+k,0,0) along the first coordinate taking values less than M, then
P (A(k)) ≥ δ2k on A(k), t−k,n+k(0) ≤ t0,n(k) + 2kM .

So µ(0) ≤ Et−k,n+k(0)
n = Et0,n+2k(0)

n ≤ Et0,n(k)
n + 2kM

n .
Let n →∞, we get µ(0) ≤ µ(k) → µ(k →∞). ∴ µ(0) ≤ µ.
But we have µ(k) ↓ as k ↑ and µ(k) → µ(k →∞).
So we have µ(k) = µ(∀k), which is certainly a very strange thing.
Step 2, Proof of Lemma 4 from Lemma 3.
Let k = nm, we can obviously see from the graph that

P (T0,nm,m ≥ nm(µ + 2ε)) ≤ P (
n−1∑
i=0

Tim,(i+1)m,m ≥ nm(µ + 2ε)).

where Tim,(i+1)m,m are i.i.d., with a common distribution as T0,m,m. We take m large
such that ET0,m,m ≤ m(µ + ε).

By Lemma 3 and a standard large deviation result, we get

P (T0,nm,m ≥ nm(µ + 2ε)) ≤ P (
n−1∑
i=0

Tim,(i+1)m,m ≥ nm(µ + 2ε))

≤ P (
n−1∑
i=0

(Tim,(i+1)m,m − ETim,(i+1)m,m) ≥ nmε) ≤ exp(−Cnmε),

where C > 0 is a constant. So Lemma 4 follows.
Step 3, Proof of Theorem 5 from Lemma 4 for θ = φ.
Take k = mn and divide [0, k]2 into ( k

m)2 = n2 equal subsquares of size m × m,
which are called S1, S2, · · · , Sn2 .

Since {φ([0, k] × Si) ≥ k(µ + ε)} and {φ([0, k] × Sj) ≥ k(µ + ε)} are independent

for i 6= j, and {φ0,k ≥ k(µ + ε)} j
n2⋂
i=1
{φ([0, k]× Si) ≥ k(µ + ε)}, we then have

P (φ0,k ≥ k(µ + ε)) ≤ [P (φ([0, k]× [0,m]2) ≥ k(µ + ε))]n
2
. (1)

By Lemma 4 and translation invariance, we have
P (φ([0, k]× [0,m]2) ≥ k(µ + ε)) ≤ P (T0,k, m

2
≥ k(µ + ε)) ≤ exp(−ηk). (2)

Combining (1) and (2), we get that for k large and m|k,

P (φ0,k ≥ k(µ + ε)) ≤ exp(−ηkn2) = exp(−C ′k3),

where C ′ = η
m2 . So Theorem 5 follows.

A further result is as follows.
Theorem 5.(Chow & Zhang,2003,Annals of Applied Probability,1601-

1614) If F (0) < pc and Eert(e) < ∞ for some r, then for all ε > 0, there exists a
constant β(ε, F, d), such that

lim
n→∞

−1
nd

log P (φ0,n ≥ n(µ + ε)) = β(ε, F, d).
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