Next we will discuss two important tails:

Oon > n(p+e) right tail
Oon < —ce) left tail

¢ = a,b,c or ¢,where agy,bo,, and co, has been defined,while ¢q,,,which is called
”Face-face first-passage time” ,is defined as follows:

¢o.n :=inf{T'(y):y is a path from A to B, v C [0,n]¢}.
where A:={0}x[0,n]9"!, B:={n}x[0,n]¢"!.

The examples of d = 2 and d = 3 can easily be imagined.
Theorem 1. minimum-cut=maximum flow.

Grimmett and Kesten (1984,PTRF) proved the following:

. 0 ,
lim Pon =pu a.s. and n Lj.
n—oo n

First we check the left tail.

Theorem 2.(Kesten,1986) Assume that for some r > 0, Ee™®) < oo and
F(0) < pe, then for all € > 0, there exists constants ¢; and cg, such that

P(0pn < n(p—ce)) < cpexp(—can).

0 =a,b,cor ¢.

Remark. The assumption ” Ee"(®) < 00” is not in Kesten(1986). In that paper it
just assumed " E't(e) < oo0”, but given the assumption » Ber(©) < 0”, the proof will be
much easier.

Proof of Theorem 2 for 0 = ¢

P(cop <n(p—e)) < Plem(ao)+cm(ar) + ...+ cem(ag) < n(p—e))
< P(cy(ag) + cylar) + ...+ ylag-1) < n(p—e)) (by Lemma 2)
Q-1
< P dyla) < QM(u— <)
=0

Since lim M = p. Take M, such that Ecj ,, > M(p— 5).

—00

—_

Q_

[chy(a:) = Beyy(a:)] < QM (=) = QM (= 5) = —QM(3).
1=0

1
Let X; = ¢y, (a;) — Ec),(a;), then EX; =0, [eP*dFy, (x) < oo.
0
For = (M, F,d). By a standard large deviation result, Jc;, ca, such that

Q

Plconm < nlp—2)) < P> X < —QM(g)) < 1 exp(—can).
=1

Remark. The proof of Theorem 2 for # = b or ¢ is quite easy, while the proof of
it for @ = a is relatively difficult.



Theorem 3. For all € > 0, if F/(0) < p., then

1
lim —ﬁlogP(Hgvn <n(p—c¢)) =alF)>0.

n—-:u;o

0 =a,b,cor ¢.
Proof of Theorem 3 for 6 = a
For any n € Z7, let X,, := —log P(agp,, < n(u —¢€)).

b

for all m,n € ZT, note that "agm < m(u—¢)” and " am min < n(u —e)” are both

decreasing events. So using FKG inequality, we get
P(agm < m(p—€))P(ammin < n(p—€)) < Plagm < m(p— €), ammin < n(p—€)).

But obviously, P(amm+n < n(p —¢)) = Plaon < n(p —¢)), {aom < m(p —
) tmamin < 11— )} € {aomen < (m+m)(u - 2)}.
So we get

P(aom < m(p —¢€))Plaon < n(p —€)) < Plagmsn < (m+n)(p — ¢)).
It equals to
—log P(ao,min < (m+4n)(u—e)) < [~log Paom < m(u—e))]+[—log P(aon < n(p—e))l.

Thus X0 < X,n + X, holds for any m,n € Z*. Use a small analytical trick we
can easily get lim % exists, so
n—m—seo

1
lim ——logP(a0,n < n(u—e¢)) =a(e, F) > 0.
n—oo n
Remark. When 6 = b, ¢ or ¢, the proof of Theorem 3 is quite similar.
Next we will check the right tail.

Theorem 4.(Kesten,1986) If F(0) < p. and Ee™*) < oo for some r, then for all
€ > 0, there exist ¢; and co, such that

P(QO,n > TL(,U, + 5)) <c eXp(—CQTL).

A general case is as follows:

Theorem 5.(Chow & Zhang,2003,Annals of Applied Probability,1601-
1614) If F(0) < p. and Ee™®) < oo for some r, then for all £ > 0, there exist ¢; and
c2, such that

P00 > n(p+¢)) < e exp(—can?).

To prove this theorem, we need to prove some lemmas first.

Lemma 3. Define

Tigeom :=inf{t(y) 1y is a path from (1,0,0) to (k,0,0), and ~ C[0,k]x[—m,m]*}.

then

. Ty .
lim —2% =y a.s. and in Lj.
m—s00 m



Lemma 4. If F(0) < p., € > 0 and Eexp(rt(e)) < oo for some r > 0. Then there
exists a constant n > 0, such that

P(Togm > k(e +¢)) < exp(—nk) for all k>m.

We will take several steps to prove Theorem 5.
Step 1, Proof of Lemma 3.
Define

T (k) :=inf{t(y) :v is a path from (m,0,0) to (n,0,0), and ’yg[m—k‘,n—i—k]de_l}.

By a standard subadditive argument,

ton(k) Eton(k)

lim = p(k) = inf ———= a.s. and in Lj.
n—-o0 n n n
Vn, tO,n(k) l as k T7
sop(k) | as k7.
For fixed k and w, let agpn(w) = klim ton(k)(w), p:= lim “%" then obviously,

aon < ton(k), p < p(k).
Fix n, Ve > 0, take k large such that

< Et07n(k) S anm te § " te.
n

k
wlk) < —
So for k large, we have pu < u(k) < u+ &, which is sufficient to get lim wu(k) = p.

The next thing for us to do is to compare ¢ ;(0) and Tp g -
Let v € [0,n] x Z97! be a path from (0,0,0) to (n,0,0) with T'(7) = to,,,(0). Define

hp(7) == 2r1<1§l<><3{|mi\ : (my,ma,m3) € v},

and
hy, == mazx{h,(y):y is a route for ton}.

It is known(see Theorem 8.15 in Smythe and Wierman(1978)) that

h
limsup — <1 almost  surely. (%)
n—-:aoo

Let H,, := {%" < 1}. Then

Etom(0) > E(to,m(0); Hn) = E(To.mm; Hm) = E(Tomm) — E(To,mm; Hyy,),

Tomm < Zt(e)-

ey
where 7 is the path from (0,0,0) to (m,0,0) along the first coordinate.

By Cauchy-Schwarz inequality, we have:

[E(T(),m,r;lm§Hgl)]2 < E(ezg:i(e))Q ' P(an)

By (*) we have P(HE,) — 0(m — o0). So lim ETom.miHn) _

m—o0 m



. Eto,m (0 . ETy,m,m
Then = lim UT() > lim —Smm
m—00

m—00

Note that lim ETO’% > lim EtO’Tm(O) > . So Lemma 3 follows.

m—00 m—00

Remark. For M >0, let P(0 <t(e) < M)=46>0.

Let A(k) be the event that all those 2k edges from (-k,0,0) to (0,0,0) and from
(n,0,0) to (n+k,0,0) along the first coordinate taking values less than M, then

P(A(k)) > 0% on A(k),  t_gnik(0) < ton(k) +2kM.

Bt g ntk(0) _ Etoniox(0) _ Eton(k) | 2kM
SO M(O) S kn+k — 0 ,:;2k S On + g

Let n — oo, we get u(0) < u(k) — p(k — o0). . u(0) < p.
But we have u(k) | as k 1 and p(k) — u(k — o0).

So we have u(k) = pu(Vk), which is certainly a very strange thing.
Step 2, Proof of Lemma 4 from Lemma 3.

Let k = nm, we can obviously see from the graph that

n—1

P(To’nm’m 2 nm(M + 26)) < P(Z T‘im7(i+1)m,m > nm(M + 25))
1=0

where T, (i41)m,m are i.i.d., with a common distribution as T m, ,. We take m large
such that ETy mm < m(p+¢).

By Lemma 3 and a standard large deviation result, we get

n—1
P(Topmm = nm(p+2)) < P(Y Tign (i1 1ymm = nim(ja + 2))
=0

n—1
< P( Z (Em,(i—l—l)m,m - ETim,(i—s—l)m,m) > nms) < exp(—C’nmg),
i=0
where C' > 0 is a constant. So Lemma 4 follows.

Step 3, Proof of Theorem 5 from Lemma 4 for 6 = ¢.
Take k = mn and divide [0, k]? into (%)2 = n? equal subsquares of size m x m,
which are called Sy, S9,--- ,5,2.
Since {¢([0,k] x S;) > k(pn+¢€)} and {¢([0,k] x Sj) > k(u + ¢)} are independent
2

for i # j, and {¢o > k(p+¢)} & Th {#(]0, k] x S;) > k(p + €)}, we then have
i=1

P(¢ox > k(p+e)) < [P(6([0, k] x [0,m]?) > k(u+ )] (1)
By Lemma 4 and translation invariance, we have
P(¢([0, k] x [0,m]?*) = k(p +€)) < P(Top,m > k(i +€)) < exp(—nk). (2)

Combining (1) and (2), we get that for k£ large and m|k,
P(¢ok > k(i +¢€)) < exp(—nkn?) = exp(~C'k?),

where C' = % So Theorem 5 follows.
A further result is as follows.
Theorem 5.(Chow & Zhang,2003,Annals of Applied Probability,1601-

1614) If F(0) < p. and Ee™®) < oo for some 1, then for all ¢ > 0, there exists a
constant (3(e, F, d), such that

lim % log P(¢on > n(p+€)) = B(e, F,d).

n—0o0



