Lecture 6 of First passage percolation(2005.7.8)

1 A Lower Bound of the Variations

For $x, y \in \mathbb{R}^d$, T(x, y) = T(x', y'), $x', y' \in \mathbb{Z}^d$ are the nearest neighbors of x, y. Given a unit vector $\vec{x} \in \mathbb{R}^d$, by the Kingman's subadditive argument,

$$\lim_{n \to \infty} \frac{1}{n} T(0, n\vec{x}) = \mu_F(\vec{x}), \ a.s. \ and \ L_1.$$

Theorem 1.1 (Kesten) $\mu_F(\vec{x}) = 0$ iff $F(0) \ge p_c$.

Clearly $\mu_F(\vec{x} + \vec{y}) \le \mu_F(\vec{x}) + \mu_F(\vec{y})$. Let $B_d = \{ \vec{x} \in \mathbb{R}^d : \mu_F(\vec{x}) \le 1 \}.$

Theorem 1.2 (Cox+Durrett(1983) Shape Theorem) Let $B(t) = \{v \in \mathbb{R}^d : T(0,v) \le t\}$. If $Et(e) < \infty$, for $\forall \epsilon > 0$, $\exists t_0, t > t_0$ such that

$$tB_d(1-\epsilon) \subset B(t) \subset tB_d(1+\epsilon);$$

and let $G(t) = \{v \in \mathbb{R}^d : Et(0, v) \leq t\}$, then

$$G(t)(1-\epsilon) \subseteq B(t) \subseteq G(t)(1+\epsilon).$$

If $F(0) < p_c$, B_d is a compact convex set and ∂B_d is a continuous convex closed curve.

Iden's Growth Model

Time 1:one cell(a unit square), and each integer time a new cell is chosen from the unit squares adjacent to the existed cells with a probability proportional to the \sharp of edges and it has in common with these cells.

$$F(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 - e^{-x} & \text{if } x \ge 0 \end{cases}$$

Let $t_n = \inf\{t : B(t) \text{ contains } n \text{ vertices}\}, A_n$ has the same distribution as $B(t_n)$, then $\lim_{n \to \infty} \frac{A_n}{\sqrt{n}}$ exists.

QUESTION: what is the shape? Let $\lambda = \inf\{x : P(t(e) \le x) > 0\},\$

Theorem 1.3 (Durrett+Liggett(1981)) If $\lambda > 0$, $P(t(e) = \lambda) > \vec{p}_c(d)$, B_d contains a flat edge.

Theorem 1.4 (Kesten) If d > 5000, $F(0) < p_c$, then $\mu_F(x_1) < \mu_F(x_0)$, where $x_0 = (1, 0, ..., 0)$ and $x_1 = (\frac{1}{\sqrt{d}}, ..., \frac{1}{\sqrt{d}})$.

Theorem 1.5 (Newman+Piza(1995,Ann of Prob. 977-1005)) If $Et^2(e) < \infty$, Var(t(e)) > 0, (1) $\lambda = 0$ and $P(t(e) = 0) = F(0) < p_c(d)$ or (2) $\lambda > 0$ and $P(t(e) = \lambda) < \vec{p_c}(d)$, then

$$Var(\theta_{0n}) \ge c \log n, \ \theta = a, b, c.$$

Remark. QUESTIONS:

- (1) $Var(\theta_{0n}) \ge n^{\alpha}? \theta = a, b, c.$
- (2) For d = 2, if $\lambda > 0$ and $P(t(e) = \lambda) > \vec{p_c}$, $Var(a_{0n}) \ge c \log n$?
- (3) For long common subsequence model and match pair model, $Var(L_n) \ge c \log n$?

Lemma 1.1 For any positive $a_k, m \ge 1$

$$\sum_{k=1}^m a_k^2 \geq \frac{1}{12} (\sum_{k=1}^m k^{-1})^{-1} (\sum_{k=1}^{m-1} k^{-1} [k^{-\frac{1}{2}} \sum_{j=1}^k a_j])^2$$

Proof of Theorem 1.5. Order bonds in a spiral order $e_1, e_2, ..., e_k, ..., \mathcal{F}_0 = \{\emptyset, \Omega\}, \mathcal{F}_k = \sigma(e_1, e_2, ..., e_k).$

$$Var(c_{0n}) = Var(c_{0n} - Ec_{0n})$$

= $Var(\sum_{i=0}^{c_{n^2}} (E(c_{0n}|\mathcal{F}_{i+1}) - E(c_{0n}|\mathcal{F}_{i})))$
= $\sum_{i=0}^{c_{n^2}} E(E(c_{0n}|\mathcal{F}_{i+1}) - E(c_{0n}|\mathcal{F}_{i}))^2,$

Suppose γ is the route of c_{0n} , that is γ is a path from (0, ...0) to $\partial B(n)$ satisfying $t(\gamma) = c_{0n}$. Consider the case when $c_{0n} = i$, $e_i \in \gamma$ and $t(e_i) = 1$; if $t(e_i)$ is turned to 0, then we get $c_{0n} = i - 1$. Let $F_k = \{t(e_k) = 1, e_k \in a \text{ route}\}$, then by Lemma1.1,

$$Var(c_{0n}) \geq \sum_{k=1}^{c_{n^{2}}} P^{2}(F_{k})$$

$$\geq C(\sum_{k=1}^{c_{n^{2}}} k^{-1})^{-1} (\sum_{k=1}^{c_{n^{2}}} k^{-1})^{2}$$

$$\geq C_{1}(\ln n)^{-1}(\ln n)^{2} = C_{1} \ln n.$$

Theorem 1.6 If $P(\frac{H_n}{n} \le n^{1-\delta}) > 0$, then $Var(a_{0n}) \ge n^{C(\delta)}$.

2 Convergence Speed

Given a subadditive ergodic process: (i) $X_{l,n} \leq X_{l,m} + X_{m,n}, 0 \leq l < m < n;$ (ii) $\{X_{nk,(n+1)k}\}$ is ergodic for each k;(iii) $X_{m+1,m+k+1}$ has the same distribution as $X_{m,m+k}$ for all m and k;(iv) $E \exp(rX_{0,1}) < \infty$, for some r and $EX_{0,n} \geq -cn, c > 0;$ then $\lim_{n\to\infty} \frac{X_{0,n}}{n} = \gamma$ a.s. and in L_1 . Let $S_n = M \log^k n$, (1) $X_{0,n}$ has at least a convergence speed n^{α} ,

$$P(|X_{0,n} - rn| \ge S_n n^{\alpha}) \le \exp(-cS_n);$$

(2) $X_{0,n}$ has at least a concentration speed n^{α} ,

$$P(|X_{0,n} - EX_{0,n}| \ge S_n n^{\alpha}) \le \exp(-cS_n);$$

(3) For each n, $\exists A_n$ such that

$$P(A_n) \ge \exp(-n^{\frac{\alpha}{2}})$$
, and on $A_n X_{0,n} + X_{n,2n} \le X_{0,2n}$

Theorem 2.1 $(1) \Leftrightarrow (2) + (3)$.

Application of Theorem 2.1.

There exist $v_0 \in \{0\} \times [0, n^2]$ and $v_{\frac{n}{2}} \in \{\frac{n}{2}\} \times [0, n^2]$, such that $P(A_1) \geq \frac{c}{n^d}$, where $A_1 = \{\omega : T(v_0, v_{\frac{n}{2}})(\omega) = \phi_{0,\frac{n}{2}}\}$. And also there exists $v_n \in \{n\} \times [0, n^2]$ and let $A_2 = \{\omega : T(v_0, v_n)(\omega) = \phi_{0,n}\}$, then $P(A_2) \geq \frac{c}{n^{2d}}$. So we have $P(A_1 \cap A_2) \geq \frac{c}{n^{4d}}$. Similarly $P(A_1 \cap A_2 \cap A_3 \cap A_4) \geq \frac{c}{n^{16d}}$, where $A_3 = \{\omega : T(v_0, v_{\frac{3}{2}n})(\omega) = \phi_{0,\frac{3}{2}n}\}$ and $A_4 = \{\omega : T(v_0, v_{2n})(\omega) = \phi_{0,2n}\}$ and on $A_1 \cap A_2 \cap A_3 \cap A_4$, $a_{0,n} + a_{n,2n} \leq a_{0,2n}$, then by Theorem 2.1 we get the convergence speed,

$$P(|a_{0,n} - \mu n| \ge t\sqrt{n}) \le \exp(-t).$$