Lecture 6 of First passage percolation(2005.7.8)

1 A Lower Bound of the Variations

For z,y € RY, T(x,y) = T(2,y'), o',y € Z are the nearest neighbors of x,y. Given
a unit vector & € R%, by the Kingman’s subadditive argument,

1
lim —7(0,n%) = pp(Z), a.s.and L;.

n—oo N

Theorem 1.1 (Kesten) pup(Z) =0 iff F(0) > p..
Clearly pp(Z+ 1) < up(Z) + pr(y). Let By = {Z € R : pup(¥) < 1}.

Theorem 1.2 (Cox+Durrett(1983) Shape Theorem) Let B(t) = {v € R%:
T(0,v) <t}. If Et(e) < 0o, for Ve >0, to, t > to such that

tBy(1 —¢€) C B(t) C tBy(1 + ¢);
and let G(t) = {v € R?: Et(0,v) < t}, then
G(t)(1—¢€) C B(t) CG(t)(1+e).
If F(0) < pe, Bq is a compact convex set and OBy is a continuous convex closed curve.

Iden’s Growth Model

Time 1:one cell(a unit square), and each integer time a new cell is chosen from the unit
squares adjacent to the existed cells with a probability proportional to the # of edges
and it has in common with these cells.

if <
Flz) = 0 it <0
1—¢e7* if x>0.

Let t, = inf{t : B(t) contains n vertices}, A, has the same distribution as B(t,), then
lim,, oo % exists.

QUESTION: what is the shape?

Let A = inf{z : P(t(e) < z) > 0},

Theorem 1.3 (Durrett+Liggett(1981)) If A > 0, P(t(e) = X) > pc(d), Bq con-
tains a flat edge.

Theorem 1.4 (Kesten) If d > 5000, F(0) < p., then pp(x1) < pr(zo), where xg =
(1,0,...,0) and x; = (%, - ﬁ)
Theorem 1.5 (Newman+Piza(1995,Ann of Prob. 977-1005)) If Et?(e) < oo,
Var(t(e)) > 0, (1) A =0 and P(t(e) = 0) = F(0) < pe(d) or (2) A > 0 and P(t(e) =
A) < pe(d), then

Var(0o,) > clogn, 0 = a,b,c.



Remark. QUESTIONS:

(1) Var(6on) > n*? 0 =a,b,c.

(2) For d =2, if A > 0 and P(t(e) = \) > p., Var(agp,) > clogn?

(3) For long common subsequence model and match pair model, Var(L,) > clogn?

Lemma 1.1 For any positive ap, m > 1
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Proof of Theorem 1.5. Order bonds in a spiral order ey, es, ..., ek, .... Fo = {0,Q},
Fr =o(e1,e9,...,€ek).

Var(con) = Var(con — Econ)
= V(IT(i(E(COn|~7:i+1) — E(con| Fi)))
i=0

= Y E(E(con|Fit1) — Elcon| Fi))?,
=0

Suppose 7 is the route of cg,, that is v is a path from (0,...0) to 0B(n) satisfying
t(y) = con. Consider the case when ¢y, = i, e; € v and t(e;) = 1; if t(e;) is turned to
0, then we get co, =i — 1. Let Fj, = {t(ex) = 1, e € a route}, then by Lemmal.1,

CnQ
Var(con) > ZPQ(Fk)
k=1

Z C(En: k_l)_l(i k,—l)?
k=1 k=1

> Ci(Inn)"'(Inn)? = Cilnn.

Theorem 1.6 If P(% < n'=%) >0, then Var(agy) > n®.

2 Convergence Speed

Given a subadditive ergodic process:

(i) Xin < X + X, 0 < I <m <n;

(i) { Xk, (n+1)r ) is ergodic for each k;

(ii1) Xpm41,m+k+1 has the same distribution as X, p,4 for all m and k;

(iv) Eexp(rXo1) < oo, for some r and EXq, > —cn, ¢ > 0;
XO,n
n

then lim,,_ o

Let S, = MlogFn,
(1) Xo,n has at least a convergence speed n?,

= a.s. and in L.

P(|Xon —rn| > Spn®) < exp(—cSy);



(2)Xo,, has at least a concentration speed n®,
P(|Xon — EXopn| > Spn®) < exp(—cSp);
(3) For each n, 3A,, such that
P(Ay,) > exp(—n%), and on A, Xo, + Xy2n < Xo,2n-
Theorem 2.1 (1)&(2)+(3).

Application of Theorem 2.1.

There exist vg € {0} x [0,n?] and ve € {3} X [0,n?], such that P(A;) > -5, where
Ay = {w : T(vo,vz)(w) = ¢o,z}. And also there exists v, € {n} x [0,n2] and let
Ay = {w : T(vo,vn)(w) = don}, then P(A2) > 5. So we have P(A; N A2) > 4.
Similarly P(A; N AN A3N Ay) > —5a, Where Az = {w: T(vo,vs,,)(w) = ¢, 3,,} and
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Ay = {w : T(vo,van)(w) = ¢o.2nand on Ay N Az N Az N A4, aon + an2n < ao2n, then
by Theorem 2.1 we get the convergence speed,

P(|agn — pn| > ty/n) < exp(—t).



