
Lecture 6 of First passage percolation(2005.7.8)

1 A Lower Bound of the Variations

For x, y ∈ Rd, T (x, y) = T (x′, y′), x′, y′ ∈ Zd are the nearest neighbors of x, y. Given
a unit vector ~x ∈ Rd, by the Kingman’s subadditive argument,

lim
n→∞

1
n

T (0, n~x) = µF (~x), a.s. and L1.

Theorem 1.1 (Kesten) µF (~x) = 0 iff F (0) ≥ pc.

Clearly µF (~x + ~y) ≤ µF (~x) + µF (~y). Let Bd = {~x ∈ Rd : µF (~x) ≤ 1}.

Theorem 1.2 (Cox+Durrett(1983) Shape Theorem) Let B(t) = {v ∈ Rd :
T (0, v) ≤ t}. If Et(e) < ∞, for ∀ε > 0, ∃t0, t > t0 such that

tBd(1− ε) ⊂ B(t) ⊂ tBd(1 + ε);

and let G(t) = {v ∈ Rd : Et(0, v) ≤ t}, then

G(t)(1− ε) ⊆ B(t) ⊆ G(t)(1 + ε).

If F (0) < pc, Bd is a compact convex set and ∂Bd is a continuous convex closed curve.

Iden’s Growth Model
Time 1:one cell(a unit square), and each integer time a new cell is chosen from the unit
squares adjacent to the existed cells with a probability proportional to the ] of edges
and it has in common with these cells.

F (x) =

{
0 if x ≤ 0
1− e−x if x ≥ 0.

Let tn = inf{t : B(t) contains n vertices}, An has the same distribution as B(tn), then
limn→∞ An√

n
exists.

QUESTION: what is the shape?
Let λ = inf{x : P (t(e) ≤ x) > 0},

Theorem 1.3 (Durrett+Liggett(1981)) If λ > 0, P (t(e) = λ) > ~pc(d), Bd con-
tains a flat edge.

Theorem 1.4 (Kesten) If d > 5000, F (0) < pc, then µF (x1) < µF (x0), where x0 =
(1, 0, ..., 0) and x1 = ( 1√

d
, ..., 1√

d
).

Theorem 1.5 (Newman+Piza(1995,Ann of Prob. 977-1005)) If Et2(e) < ∞,
V ar(t(e)) > 0, (1) λ = 0 and P (t(e) = 0) = F (0) < pc(d) or (2) λ > 0 and P (t(e) =
λ) < ~pc(d), then

V ar(θ0n) ≥ c log n, θ = a, b, c.
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Remark. QUESTIONS:
(1) V ar(θ0n) ≥ nα? θ = a, b, c.
(2) For d = 2, if λ > 0 and P (t(e) = λ) > ~pc, V ar(a0n) ≥ c log n?
(3) For long common subsequence model and match pair model, V ar(Ln) ≥ c log n?

Lemma 1.1 For any positive ak, m ≥ 1

m∑

k=1

a2
k ≥

1
12

(
m∑

k=1

k−1)−1(
m−1∑

k=1

k−1[k−
1
2

k∑

j=1

aj ])2

Proof of Theorem 1.5. Order bonds in a spiral order e1, e2, ..., ek, .... F0 = {∅,Ω},
Fk = σ(e1, e2, ..., ek).

V ar(c0n) = V ar(c0n − Ec0n)

= V ar(
cn2∑

i=0

(E(c0n|Fi+1)− E(c0n|Fi)))

=
cn2∑

i=0

E(E(c0n|Fi+1)− E(c0n|Fi))2,

Suppose γ is the route of c0n, that is γ is a path from (0, ...0) to ∂B(n) satisfying
t(γ) = c0n. Consider the case when c0n = i, ei ∈ γ and t(ei) = 1; if t(ei) is turned to
0, then we get c0n = i− 1. Let Fk = {t(ek) = 1, ek ∈ a route}, then by Lemma1.1,

V ar(c0n) ≥
cn2∑

k=1

P 2(Fk)

≥ C(
cn2∑

k=1

k−1)−1(
cn2∑

k=1

k−1)2

≥ C1(lnn)−1(lnn)2 = C1 lnn.

Theorem 1.6 If P (Hn
n ≤ n1−δ) > 0, then V ar(a0n) ≥ nC(δ).

2 Convergence Speed

Given a subadditive ergodic process:
(i) Xl,n ≤ Xl,m + Xm,n, 0 ≤ l < m < n;
(ii) {Xnk,(n+1)k} is ergodic for each k;
(iii) Xm+1,m+k+1 has the same distribution as Xm,m+k for all m and k;
(iv) E exp(rX0,1) < ∞, for some r and EX0,n ≥ −cn, c > 0;
then limn→∞

X0,n

n = γ a.s. and in L1.

Let Sn = M logk n,
(1) X0,n has at least a convergence speed nα,

P (|X0,n − rn| ≥ Snnα) ≤ exp(−cSn);

2



(2)X0,n has at least a concentration speed nα,

P (|X0,n − EX0,n| ≥ Snnα) ≤ exp(−cSn);

(3) For each n, ∃An such that

P (An) ≥ exp(−n
α
2 ), and on An X0,n + Xn,2n ≤ X0,2n.

Theorem 2.1 (1)⇔(2)+(3).

Application of Theorem 2.1.
There exist v0 ∈ {0} × [0, n2] and vn

2
∈ {n

2 } × [0, n2], such that P (A1) ≥ c
nd , where

A1 = {ω : T (v0, vn
2
)(ω) = φ0, n

2
}. And also there exists vn ∈ {n} × [0, n2] and let

A2 = {ω : T (v0, vn)(ω) = φ0,n}, then P (A2) ≥ c
n2d . So we have P (A1 ∩ A2) ≥ c

n4d .
Similarly P (A1 ∩ A2 ∩ A3 ∩ A4) ≥ c

n16d , where A3 = {ω : T (v0, v 3
2
n)(ω) = φ0, 3

2
n} and

A4 = {ω : T (v0, v2n)(ω) = φ0,2n}and on A1 ∩ A2 ∩ A3 ∩ A4, a0,n + an,2n ≤ a0,2n, then
by Theorem 2.1 we get the convergence speed,

P (|a0,n − µn| ≥ t
√

n) ≤ exp(−t).
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