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Some problems on branching random walks

Pascal Maillard

May 8, 2018

I collect here some problems which I find interesting. I hope that they qualify as sufficiently
deep/interesting to others and that there are no obvious solutions or previous work on them
which I don’t know about.

1 From branching Brownian motion to branching random walk

Consider one-dimensional branching Brownian motion with negative drift −µ and killed at
the origin. There is a critical drift µc, such that this system dies out almost surely if and only
if µ ≥ µc. In the recent years, some very fine results have been obtained when the drift µ is
equal or just below the critical drift µc, see for example [3, 2, 4, 5, 6]. For example, in [3],
the authors show that as µ ↑ µc, and with carefully chosen initial conditions, the number of
particles in the system converges, after a suitable normalization, to a certain limiting process
called Neveu’s continuous-state branching process. The analysis adapts to critical drift and
allows for example to obtain precise estimates on the probability of survival until a time t [6].

Adapting these and other results to branching random walk seems like a tough and inter-
esting problem. The major hurdle seems to be to obtain precise estimates on random walks
conditioned to stay in an interval [a, b] or, more generally, between two curves. A typical
result in this direction is Mogul’skii’s estimate [13], which gives the first order in the (expo-
nential) decay of such a probability. It seems that more refined estimates are needed and no
general theory seems to be available up to now. See for example [10] for explicit calculations
for random walks with steps distributed like E − 1, where E ∼ Exp(1).

2 Branching Brownian motion with time-varying variance

Consider a variant of branching Brownian motion, where the diffusion constant or variance of
the particle motion changes over time. More precisely, let σ : [0, 1] → R+. Then consider the
generalization of branching Brownian motion where the infinitesimal variance of the particle
motion at time t ∈ [0, T ] is given by σ2(t/T ). So formally, we are considering a family
of branching processes indexed by T . This is a continuous version of Derrida’s generalized
random energy model and similar to Bovier-Kurkova’s CREM [7, 8].

The behavior of this model depends very much on the form of the function σ. I won’t go
into details here but rather refer to [7, 12] for a description of the various phases. One should
also check out recent papers by Bovier and Hartung.

This model has been well studied, but fine limit theorems are still lacking. For example,
the convergence of the point process formed by extremal points is only known in particular
examples. There are inherent difficulties. For example, consider the law of the maximum MT
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at time T . With O. Zeitouni [11], we have studied the case where σ is strictly decreasing (and
smooth). We have shown that there exists explicit constants v and w, such that the family
of random variables (MT −mT )T≥0 is tight, where

mT = vT − wT 1/3 − σ(1) lnT.

An obvious next step is to prove convergence in distribution. The major difficulty here is
that unlike in the time-homogeneous case, extremal particles at time T will, with positive
probability, be extremal at some random intermediate time between εT and (1 − ε)T (this
is related to the full replica symmetry breaking of the model in spin glass jargon). However,
I believe that this can be handled as in BBM with absorption [3, 6], namely by showing
convergence of a suitable statistic to Neveu’s CSBP. This approach would then also allow
to show convergence of the extremal process. It would also provide a way of studying the
genealogy of the maximal particles.

Another interesting question is large deviation behavior of the maximum, i.e., what is the
probability that the maximum is a constant times larger than its typical value and what does
the process look like conditioned on this event? For the time-homogeneous case, this has been
treated long ago by Chauvin and Rouault [9]. It is possible that their techniques (martingale
change of measures) can be adapted to the time-inhomogeneous case.

3 N-branching random walk with heavy tails

In [1], we studied branching random walk with jumps of regularly varying tails and with
selection of the N right-most particles at every step, N � 1 a parameter. We provided a
quite precise limit theorem for the speed of this system, relying on a coupling with a certain
limiting process, called the stairs process in our work.

A natural question and possibility for future research is to investigate what happens in
between the two scenarios of light-tailed displacement distributions (satisfying an exponential
moment assumption) and the polynomial tails considered in the present article. This seems to
be a delicate and interesting question. Even the heuristic picture is not clear. For example, it
is not clear to us whether for all subexponential displacement distributions the advance of the
cloud of particles arises from jumps of single particles as is the case for the regularly varying
tails considered here. One would expect this behavior from the large deviation behavior of
general random walks with subexponential displacement distributions, but the interaction
between the particles might cause other effects.

This question is related to the genealogy of the model. In the regularly varying case, we
believe (but have not shown) the genealogy to be described by the star-shaped coalescent (i.e.
the coalescent where all particles coagulate to a single block). Does this coalescent describe
the genealogy of N -BRW for every subexponential displacement distribution?
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A Problem Associated With the Two-Parameter

Dirichlet Process

Shui Feng

McMaster University

For any 0 ≤ α < 1 and θ > −α, let Uk, k = 1, 2, ..., be a sequence of independent

random variables such that Uk has Beta(1− α, θ + kα) distribution. Set

V α,θ
1 = U1, V α,θ

n = (1− U1) · · · (1− Un−1)Un, n ≥ 2,

and let P(α, θ) = (ρ1, ρ2, ...) denote (V α,θ
1 , V α,θ

2 , ...) in descending order. The distribution

of (V α,θ
1 , V α,θ

2 , . . .) is called the two parameter GEM distribution. The law of P(α, θ)

is called the two parameter Poisson-Dirichlet distribution, denoted by PD(α, θ). For a

locally compact, separable metric space S, and a sequence of i.i.d. S-valued random

variables ξk, k = 1, 2, ... with common diffusive distribution ν0 on S, let

Ξα,θ,ν0 =
∞∑

k=1

ρkδξk . (0.1)

The distribution of Ξα,θ,ν0 , denoted by Dirichlet(θ, α, ν0) is called the two-parameter

Dirichlet process.

The Dirichlet process introduced by Ferguson corresponds to α = 0. Let Cb(S) be

the set of bounded, continuous functions on a locally compact, separable metric space S,

M1(S) denote the space of all probability measures on S equipped with the usual weak

topology. Define the operator A of the form

Af(x) =
θ

2

∫
(f(y)− f(x))ν0(dy), f ∈ Cb(S).

Define

D = {u : u(µ) = f(〈φ, µ〉), f ∈ C∞
b (R), φ ∈ Cb(S), µ ∈ M1(S)},
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where C∞
b (R) denotes the set of all bounded, infinitely differentiable functions onR. Then

the Fleming-Viot process with parent independent mutation is a pure atomic measure-

valued Markov process with generator

Lu(µ) = 〈A∇u(µ)(·), µ〉+ f ′′(〈φ, µ〉)
2

〈φ, φ〉µ, u ∈ D,

where

∇u(µ)(x) = δu(µ)/δµ(x) = lim
ε→0+

ε−1{u((1− ε)µ+ εδx)− u(µ)},

〈φ, ψ〉µ = 〈φψ, µ〉 − 〈φ, µ〉〈ψ, µ〉,

and δx stands for the Dirac measure at x ∈ S. It is known that this Fleming-Viot process

is reversible with Dirichlet process Dirichlet(θ, 0, ν0) as reversible measure.

Open Problem: Can one generalize the Fleming-Viot process to the two-parameter

setting with 0 < α < 1 so that Dirichlet(θ, α, ν0) is its reversible measure or stationary

distribution?
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Limits of multiplicative inhomogeneous
random graphs and Lévy trees

T. DUQUESNE Sorbone Université, Pierre and Marie Curie Sciences Faculty, France,
E-mail: thomas.duquesne@upmc.fr
N. Broutin Sorbone Université, Pierre and Marie Curie Sciences Faculty (Paris 6, Jussieu),
E-mail: nicolas.broutin@upmc.fr
M. Wang University of Bath, Probability Laboratory at Bath, United Kingdom
Email: wangminmin03@gmail.com

Abstract:

We consider a model of inhomogeneous random graphs that extend Erdős–Rényi graphs and that shares a close
connection with the multiplicative coalescence, as pointed out by Aldous [Ann. Probab., vol. 25, pp. 812–854, 1997].
These models have been studied first by Aldous and Limic [Electron. J. Probab., vol. 3, pp. 1–59, 1998] and their con-
nected components evolve as a multiplicative coalescent: namely, let N be the number of vertices and let w1, . . . , wN

be a set of positive weights; we independently put an edge between vertices i and j with probability pi,j = 1−e−wiwj/s

(in our case, we consider, s = w1 + . . .+ wN ).
Our results are the following: we first generate such graphs by an exploration that reduces to a LIFO queue. This

point of view allows to code an appropriate spanning tree of the graph thanks to a contour process (and a modified
Lukasiewicz path) and to get a simple control on the surplus edges. The spanning tree encompasses most of the
metric structure. This construction also allows to embed such graphs into Galton-Watson trees.

This embedding transfers asymptotically into an embedding of the limit objects into a forest of Lévy trees, which
allows us to rpove a limit theorem and an explicit construction of the limit objects from the excursions of a Lévy-type
process. As a consequence of our construction, we give a transparent and explicit condition for the compactness of the
limit objects and determine their fractal dimensions. These results extend and complement several previous results
that had obtained via model- or regime-specific proofs, for instance: the case of Erdos-Renyi random graphs obtained
by Addario-Berry, Goldschmidt and B. [Probab. Theory Rel. Fields, vol. 153, pp. 367–406, 2012], the asymptotic
homogeneous case as studied by Bhamidi, Sen and Wang [Probab Theory Rel. Fields, vol. 169, pp. 565–641, 2017],
or the power-law case as considered by Bhamidi, Sen and van der Hofstad [Probab. Theory Rel. Fields, vol. 170,
pp. 387–474, 2018].

Open problems:

The questions are in close connections with the talk and I refer to the preprint available on arXiv:

https://arxiv.org/abs/1804.05871

for precise definitions and notation.

Problem 1. The law of a continuous multiplicative graph is characterised by an increasing function ψ : (0,∞) →
(0,∞). We have proved that if

∫∞
1

dλ/ψ(λ) < ∞, then the limiting graph is compact. Question: Is this condition
sharp ?

Problem 2. Is it possible to recover in a measurable way the blue process (and red process) from the Markovian
process X ? Even in the purely Brownian case (that corresponds to the limit of Erdős–Rényi graphs), this question
does not seem clear.

In this case, it can be rewritten independently of the paper as follows: let (Bb
t )t∈[0,∞) and (Br

t )t∈[0,∞) be two
independent one-dimensional Brownian motions with initial value 0; we set

θbt = t+ inf
{
s ∈ [0,∞) : Br

s< − 1

2 t
2
}
, Λb

t = inf
{
s ∈ [0,∞) : θbs>t

}
Λr
t = t− Λb

t and Bt = Bb(Λb
t ) +Br(Λr

t ) .

It turns out that B is a one-dimensional Brownian motion with initial value 0. Question: Is it possible to derive Bb

and Br from B in a measurable way ?
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Spatial limit theorems for superprocesses and branvhing Markov
processes without the discrete spectrum assumption

Renming SONG University of Illinois at Urbana-Champaign, USA, E-mail: rsong@illinois.edu

Key words: superprocesses; branching Markov processes; central limit theorems; L logL criterion

Mathematical Subject Classification: 60J68; 60J80; 60G57; 60J45; 60F05

Recently, many “spatial” limit theorems, such as law of large numbers, L logL criterion and central limit theorems,
have been established for superprocesses and branching Markov processes under the assumption that the mean
semigroup has discrete spectrum (plus some other conditions), see [1]–[12]. This excludes the case of super Brownian
motions. It is natural to ask for versions of these spatial limit theorems without this discrete spectrum assumption.
The paper [13] of S. Watanabe might be useful.
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Ellen Powell: Questions
Generalising the construction of the Gaussian free field from a nested CLE4, the authors in ([5]) define a family

of “CLEκ nesting fields”, for κ ∈ (8/3, 8), in the following way. Let µ be a probability measure on R with finite
second moment and let Γ be a nested CLEκ in a simply connected domain D. Let (ξL)L∈Γ be i.i.d random variables,
one for each loop L ∈ Γ, with distribution µ. Finally for ε > 0 and z ∈ D define

Sz(ε) =
∑

L∈Γ
Bx(ε)⊂int(L)

ξL ; hε(z) = Sz(ε)−E[Sz(ε)].

It is shown in ([5]) that for any δ > 0 the field hε converges almost surely in H−2−δ(D) (as ε → 0 along any
given geometric sequence), to a limiting field h. The Gaussian free field corresponds to the case when κ = 4 and
µ({λ}) = µ({−λ}) = 1/2, where λ is a fixed constant depending on the normalisation of the free field ([3],[4]).

1. Using the procedure in ([1]) it is possible to construct a family of measures (indexed by some parameter β)
associated with a nested CLEκ. Can the same measures be obtained as exponential/chaos measures (in some
suitable sense) of the nesting field h defined using the same CLEκ and with µ({1}) = 1? Are they deterministic
given the field h (i.e. if you just know the field and not the loops used to build it)? Is the field a deterministic
function of the family of measures?

2. Now suppose that you assign i.i.d centered ±1 weights to a nested CLEκ. Using the same method as in ([2]),
can you construct a family of measures from the loops and weights?

3. Keeping the set up above, one can also define a new loop ensemble as follows:

• Sample the first level CLEκ and the weights for each of the loops.

• Keep all the loops having weight +1 and inside the other loops repeat the procedure, adding the new
weights to the previous one. Keep any loops with total weight +1, and then iterate the procedure inside
all of the others.

• Continue until all the loops have total weight +1.

Does this loop ensemble satisfy the conditions of ([1])? If so, do the measures you get using ([1]) correspond to
those constructed in point 2?

4. If the answers to all the above are yes, do these measures correspond (in some suitable sense) to exponen-
tial/chaos measures of the nesting field h with κ �= 4 and µ({1}) = µ({−1}) = 1/2? Are they deterministic
given the field h?

5. Conversely, is the field h deterministic given the family of measures?

6. When the Gaussian free field is constructed as a nesting field with κ = 4, it is known that the loops used to
build it are deterministic given the field. Is this true for other values of κ and laws µ?

7. What can one say about the extremal process of the CLEκ nesting field?
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Éric Brunet: An asymptotic expansion for the
velocity of the BBM

In a branching Brownian motion, the median position of the rightmost particle
is [Bramson],

µt = 2t− 3

2
log t+ a+ o(1), as t → ∞, (1)

where a is some constant. (I assumed the diffusivity constant of the Brownians
is

√
2, you need to divide everything by

√
2 if you choose a diffusivity 1)

From the point of view of PDE, call h the solution to the F-KPP equation

∂th = ∂2
xh+ h− h2, h(x, 0) = Vx<0; (2)

it turns out that h(x, t) = �
[
R(t) ≥ x

]
and thus µt satisfies h(µt, t) = 1/2. The

solution to the F-KPP equation develops into a front, and we say that µt is the
position of the front.

There seems to be no result for an asymptotic expansion for the instan-
taneous velocity ∂tµt of the front. However (ask any physicist), it is certain
that

∂tµt = 2− 3

2t
+ o(t−1), as t → ∞. (3)

Can one prove it ?
Bonus:

• There are various ways one could define the position of the front µt and
still have the expansion (1) hold (for a different value of a). Examples
of valid choices are the expected position of the rightmost particle µ(1)

t =
j[R(t)] = −

∫
dxx∂xh(x, t), or its most likely position µ(2)

t , solution to
∂2
xh(µ

(2)

t , t) = 0. Then can one prove that (3) also hold for these positions?

• What about different initial conditions ? If h(x, 0) decays fast enough,
then (1) still holds (with a different value for a...) So should (3), but can
one prove it ?

• Why stop at the first derivative ? Do we have

∂n
t µt = (−1)n

3(n− 1)!

2tn
+ o(t−n), t → ∞, n ≥ 2? (4)

• Bramson’s expansion can be refined. With different levels of proof, one
has

µt = 2t− 3

2
log t+ a− 3

√
π√
t

+
8

9
(5− 6 log 2)

log t+ b

t
+O

( log t
t3/2

)
, (5)

where b is another constant depending on the precise definition of µt and
on the initial condition. Then one should have

∂tµt = 2− 3

2t
+

3
√
π

2t3/2
− 8

9
(5− 6 log 2)

log t+ b− 1

t2
+O

( log t
t5/2

)
, (6)

but a proof might be needed.
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Open problems on branching Brownian motion
with decay of mass

Sarah Penington ∗

May 8, 2018

Branching Brownian motion with decay of mass is a model of competition for
resources in a spatially structured population, introduced in [?]. The model
is based on a one-dimensional branching Brownian motion (BBM). We assign
a mass to each particle in the BBM; the mass of a particle decays at rate
proportional to the total mass of particles in a window of radius µ centred at
the location of the particle, for some fixed µ > 0. More precisely, we let N(t)
denote the number of particles in the BBM at time t and let (Xi(t), i ≤ N(t))
denote the locations of the particles. For t ≥ 0, x ∈ R, let

ζ(t, x) =
1

2µ

∑

{i:|Xi(t)−x|∈(0,µ)}

Mi(t).

Then for i ≤ N(t), let

Mi(t) = exp
(

−
∫ t

0
ζ(s, Xi,t(s))ds

)
,

where Xi,t(s) is the location of the ancestor of Xi(t) at time s.
In joint work with Louigi Addario-Berry [?], we showed that in a weak sense,

there are arbitrarily large times t at which the front location in this model is
Θ(t1/3) behind the location of the rightmost particle in the BBM. For m > 0, we
let d(t, m) = inf{x > 0 : ζ(t, x) < m} and D(t, m) = sup{x : ζ(t, x) > m}. Then
using results on consistent maximal displacement for BBM [?, ?], we showed
in [?] that for m ∈ (0, 1), almost surely,

lim sup
t→∞

√
2t − d(t, m)

t1/3 ≥ c∗ and lim inf
t→∞

√
2t − D(t, m)

t1/3 ≤ c∗,

where c∗ = 34/3π2/3/27/6. In recent joint work with Louigi Addario-Berry and
Julien Berestycki [?], we showed that there exists m∗ = m∗(µ) > 0 such that
for m ∈ (0, m∗], there exist R < ∞ and a random time T < ∞ almost surely
such that for t ≥ T ,

inf
s≥0

d(t + R log t + s, m) ≥ D(t, m).

∗penington@maths.ox.ac.uk, Mathematical Institute, University of Oxford
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It follows that for m ∈ (0, m∗], almost surely

lim sup
t→∞

√
2t − D(t, m)

t1/3 ≥ c∗ and lim inf
t→∞

√
2t − d(t, m)

t1/3 ≤ c∗.

Question 1: Do we have that for m ∈ (0, 1), almost surely

lim
t→∞

√
2t − D(t, m)

t1/3 = c∗ and lim
t→∞

√
2t − d(t, m)

t1/3 = c∗ ?

Even showing that there exist 0 < a < 1
3 < b < 1 such that almost surely

lim inf
t→∞

√
2t − d(t, m)

ta
= ∞ and lim sup

t→∞

√
2t − D(t, m)

tb
= 0

would be a new result.
Question 2: In [?], we proved the following upper bound on the largest particle
mass: for any α < 1 and n ∈ N, for t sufficiently large,

P
(

max
i≤N(t)

Mi(t) ≥ t−α

)
≤ t−n.

We believe that in fact the largest particle mass decays much more quickly - can
we improve on this upper bound? An improved bound on the largest particle
mass would help us make progress in Question 1.

References
[1] L. Addario-Berry, S. Penington. The front location in branching Brownian

motion with decay of mass, Annals of Probability 45(6A) (2017), 3752–
3794.

[2] L. Addario-Berry, J. Berestycki, S. Penington. Branching Brownian motion
with decay of mass and the non-local Fisher-KPP equation, arXiv preprint
arXiv:1712.08098 (2017).

[3] B. Jaffuel. The critical barrier for the survival of branching random walk
with absorption, Annales de l’Institut Henri Poincaré, Probabilités et Statis-
tiques 48(4) (2012), 989–1009.

[4] M. Roberts. Fine asymptotics for the consistent maximal displacement
of branching Brownian motion, Electronic Journal of Probability 20(28)
(2015), 1–26.

2



Some open problems related to the talk:
Modelling Darwinian evolution as interacting particle systems

This is based in a current project

G. Berzunza∗, A. Sturm † and A. Winter‡

Abstract

In this note, we provide a very rough “introduction” to a particular individual-based model for
adaptive dynamics of interacting populations. The goal is to present some open problems in this
field.

1 Introduction

The study of interactions between organisms and their environment which influences their reproductive
success, and contribute to genotype and phenotype variation is one of the main questions in evolutionary
ecology and population genetics. In this note, we are interested in modelling the dynamics of populations
by emphasizing the ecological interactions, namely the competition between individuals for limited
resources, where each individual is characterized by a quantitative trait which remains constant during
the individual’s life and which is passed on to offspring unless a mutation occurs. Motivated by the
work of Bolker-Pacala [2] and Dieckmann-Law [6], several models have been rigorously developed in this
context. For example, Fournier and Méléard [9], Champagnat, et al. [4], Jourdain, et al. [10], Méléard
and Viet Chi [13], Méléard and Viet Chi [12] and the work in preparation [1].

The plan of the rest of this note is as follows. Section 2 is devoted to the introduction of a simple the
individual-based model studied by Champagnat, et al. [4]. In Section 3, we state the main convergence
result obtained in [4] based on a large population limit. In the talk, we are going to see a more general
model that yields to a different convergence result. Finally, in Section 4, we present some open questions
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related to the limiting process obtained in Theorem 1. It is important to point out that similar questions
can be made about the model we are going to discuss in the conference. In this note, we keep things
simple for an easier presentation of the topic.

In the present note we use the following notation. Given two topological spaces V and W , we denote
by B(V,W ) the set of bounded measurable functions from V to W . Let B(V,R) be furnished with
the supremum norm (i.e. for f ∈ B(V,R), we rite ‖ f ‖∞= supx∈V |f(x)|) and B(V,R+) denote the
subset of B(V,R) of positive elements. Let T > 0 and D([0, T ], V ) (resp. D([0,∞), V )) denote the space
of càdlàg paths from [0, T ] (resp. from [0,∞)) to V furnished with the Skorokhod topology. We use
Cb(V,R) (resp. Cb(V,R+)) to denote the set of bounded continuous functions from V to R (resp. from
V to R+). For any integers d, n ≥ 1, let Cn

b (Rd,R) (resp. Cn
b (Rd,R+), Cn

b (Rd
+,R+)) be the subset of

Cb(Rd,R) (resp. Cb(Rd,R+), Cn
b (Rd

+,R+)) of functions with bounded continuous derivatives up to the
n-th order. We use the superscript “+” to denote the subsets of non-negative elements bounded away
from zero e.g., B(V,R+)

+, Cb(V,R+)
+, etc. That is, for f ∈ B(V,R+)

+ (or Cb(V,R+)
+) there exists a

ε > 0 such that f(x) ≥ ε for all x ∈ V .

2 The individual-based model

In this section, we formally introduce our interacting particle Markov process for Darwinian evolution
in an asexual population with non-constant population size in which each individual is characterized
by hereditary types. Our model’s construction starts with a microscopic description of a population in
which the adaptive traits influence the birth rate, the mutation process, the death rate, and how the
individuals interact with each other and their external environment. More precisely, we assume that the
phenotype of each individual is described by a quantitative trait. Throughout the paper, we will assume
that

the trait (or type) space X = Rd, for some d ≥ 1.

We consider a parameter K ∈ N that scales the resources or area available. It is called the “system
size” by Metz et al. [14]. It will become apparent later that this parameter is linked to the size of the
population: large K means a large population (provided that the initial condition is proportional to
K). We have the following definition of the stochastic interacting individual system where individuals
behave independently:

1. Birth and mutation: An individual of trait x ∈ X gives birth to a single individual at rate
Kr(x) + b(x). We assume that r ∈ B(X ,R+)

+ and b ∈ B(X ,R+). The new individual is a
clone (has the same type) of his parent with with probability 1 − p(x), where p(x) ∈ [0, 1] is the
mutation probability of an individual with trait x ∈ X . Otherwise, it produces a mutant of type
h with probability p(x)mK(x, z)dz, where mK(x, z)dz is a probability measure on X called the
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mutation kernel or mutation step law. We assume that there is a density function m̄ on X such
that mK(x, z) ≤ CKm̄K(x− z), for some constant CK > 0.

2. Natural death: An individual of type x ∈ X dies naturally at rate Kr(x) + d(x), where d ∈
B(X ,R+).

3. Competition: We let c(x, y) ∈ B(X × X ,R+) be the competition kernel which models the
competition pressure felt by an individual with trait x ∈ X from an individual with type y ∈ X . We
then add extra death due to competition. Specifically, each individual of type y points independent
exponential clocks of parameter 1

K
c(x, y) on each individual of type x. Then, the death of an

individual of type x occurs as soon as a clock pointed at this individual rings.

Remark 1. A classical choice of the competition function is c ≡ 1 which corresponds to density depen-
dence involving the total population size known as the “mean field case” or the “logistic case”. See also
[4, Equation (2.7) in Section 2.2] where an example of asymmetrical competition is discussed.

Let M(X ) denote the set of finite Borel measures on X equipped with the weak topology, and define
the subset MK(X ) of M(X ) by

MK(X ) =

{
1

K

n∑

i=1

δxi
: n ≥ 0, x1, . . . , xn ∈ X

}
,

where δx is the Dirac measure at x. For any µ ∈ M(X ) and any measurable function f on X , we set
〈µ, f〉 =

∫
X fdµ.

At any time t ≥ 0, we let Nt be the finite number of individuals alive, each of which is assigned
a trait type in X . Let us denote by x1, . . . , xNt the trait types of these individuals. The state of the
population at time t ≥ 0, rescaled by K, can be described by the finite point measure νK

t on X defined
by

νK
t =

1

K

Nt∑

i=1

δxi
.

We let 1A be the indicator function of a set A ⊂ X . For simplicity, we denote by 1 := 1X the
indicator function on the whole space. We observe that 〈νK

t ,1〉 = NtK
−1. For any x ∈ X , the positive

number 〈νK
t ,1{x}〉 is called the density of the trait x at time t.

Champagnat, et al. [4] (see also [9]) have shown that the population process (νK
t , t ≥ 0) is a (unique in

law) càdlàg MK(X )-valued Markov process with infinitesimal generator, L K , defined for any bounded
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measurable function f from MK(X ) to R and for all µK ∈ MK(X ) by

L Kf(µK) = K

∫

X
(Kr(x) + b(x))(1− p(x))

(
f

(
µK +

δx
K

)
− f(µK)

)
µK(dx)

+K

∫

X
(Kr(x) + b(x))p(x)

∫

X

(
f

(
µK +

δz
K

)
− f(µK)

)
mK(x, z)dzµ

K(dx)

+K

∫

X

(
Kr(x) + d(x) +

∫

X
c(x, y)µK(dy)

)(
f

(
µK − δx

K

)
− f(µK)

)
µK(dx). (1)

Remark 2. In the related talk, we are going to discuss a more general setting where multiple offspring
can occur at the birth event. Moreover, we consider that the offspring distribution may depend on the
parent individual’s trait as well as on the phenotypic variation of the offspring due to mutation. As a
consequence, we are going to obtain a more general convergence result that the one presented in this note.
Loosely speaking, the presence of multiple offspring is going to allow us to get a random measure-valued
process with jumps.

3 The superprocess limit

In this section, we investigate the limit when the system size K increases to +∞ of the interactive
particle system described in Section 2, which leads to a random measure-valued process. In an obvious
way, we regard the previous interactive particle system as a process with state space MK(X ) ⊂ M(X ).

We consider the following hypothesis.

Assumption 1. The mutation kernel mK(x, z) is the density of a random variable with mean x ∈ X
and variance-covariance matrix Σ(x)/K = (Σij(x)/K, 1 ≤ i, j ≤ l). The function Σ is bounded and the
third moment of mK(x, z) is of order 1/K1+ε uniformly on x ∈ X with ε > 0.

Remark 3. We notice that as K → ∞, mutant traits become more concentrated around their progenitors.
For instance,

mK(x, h)dh =

(
K

2πσ2(x)

)d/2

exp

(
−K|h− x|2

2σ2(x)

)
1{h∈Rd} dh,

where σ2(x) positive and bounded on X .

Let us now state our main convergence result due to Champagnat, et al. [4, Theorem 4.5].

Theorem 1. Suppose that Assumption 1 is fulfilled. Assume also that there exists µ ∈ M(X ) (possibly
random) such that

lim
K→∞

νK
0 = µ
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in law for the weak topology on M(X ) and that

sup
K

E[〈νK
0 ,1〉3] < ∞. (2)

Then, for each 0 < T < +∞, The sequence of processes (νK)K, converges in law in D([0, T ],M(X )) to
the unique (in law) continuous super-process ν ∈ D([0, T ],M(X )), defined by the following conditions

1. We have that

sup
t∈[0,T ]

E[〈νt,1〉3] < +∞.

2. The measure-valued process ν ∈ D([0, T ],M(X )) solves the following martingale problem: For any
φ ∈ C2

b (X ,R+), the process M(φ) = (Mt(φ), t ∈ [0, T ]) given by

Mt(φ) = 〈νt, φ〉 − 〈ν0, φ〉 −
1

2

∫ t

0

∫

X
p(x)r(x)

∑

i≤i,j≤d

Σij(x)∂
2
ijφ(x)νs(dx)ds

−
∫ t

0

∫

X
φ(x)

(
b(x)− d(x)−

∫

X
c(x, y)νs(dy)

)
νs(dx)ds (M)

is a continuous martingale with quadratic variation

2

∫ t

0

∫

X
r(x)φ2(x)νs(dx)ds,

Remark 4. Jourdain, et al. [10] obtained a similar result by considering that the mutation kernel
belongs to the domain of attraction of a stable law. The limiting-measure valued process in Theorem 1
can be seem as an extension of the one of Etheridge [7] by taking c(x, y) = h(|x− y|) for x, y ∈ X with
a nonnegative decreasing function h on R+ that satisfies

∫∞
0

h(r)rd−1dr < ∞. As we are going to see
in the related talk, we can assume even a more general mutation kernel and obtain a different limiting
process.

4 Open Problems

In this section, we present some open problems related to the models introduced in Section 2 and
Theorem 1. Similar questions can be made for the most general framework that it is going to be
presented at the conference.

Problem 1. Is there a density for the limiting measure-valued process ν in Theorem 1? One could expect
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a positive answer when d = 1, as for the Super-Brownian motion; see for example [8] and reference there
for general background.

Natural questions that one can expect to answer about the individual-based model in Section 2 and
the limiting measure-valued process ν in Theorem 1:

Problem 2. What can we say about the extinction (or survival) probability and the distribution of the
extinction time of the different sub-populations or the global population?. We refer to [7], where this
question has been answered in a very particular framework.

Problem 3. What can we say about the quasi-stationary distributions (assuming that the population
will be extinct almost surely) ?. See for instance [3] [5] where some particular cases are considered.

A significant interest in evolutionary biology is devoted to reconstructing phylogenies based on avail-
able data on the extant species (of molecular or another type). The assumption is that in the distant
past there was a common ancestor from which the extant species evolved according to some (stochastic)
evolutionary model. One then tries to find the ancestral history (genealogy) of the extant species which
optimizes some “best fit” criterion. Using shapes of such phylogenetic trees one then hopes to make some
inference on the diversification properties of the evolutionary process. Therefore, we have the following
problem:

Problem 4. Is it possible to provide a description of the genealogies in the proposed (microscopic)
individual-based model in Section 2, and the limiting (macroscopic) model in Theorem 1? see [11].
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