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Abstract The range and the nonextinction property of a supercritical superdiffusion and solutions of its corresponding differential
equation are studied. It is proved that under a suitable condition, the conditioned superprocess of the supercritical superdiffusion is
a subcritical superdiffusion.

Keywords: supercritical superdiffusion, subcritical superdiffusion, nonlinear elliptic equation range.

LET L be a uniformly elliptic differential operator in RY, and § = (&, II,) be a diffusion with the gener-
ator I.. For constants A, B > 0, and 1< a<(2, let

$'(2) =- Az + Bz*;-  ¢*(z) = (a —1)Az + Bz, z € &
Denote by X' = (X}, X1, P},) the superdiffusion with parameters (L, ¢'), and by X*> = (X2, X%, P%)
the superdiffusion with parameters (L, ¢?). We discuss the range and the nonextinction property of su-
percritical superdiffusion X' and solutions of its corresponding differential equation. We also obtain a theo-
rem on the relationship between X' and X2.
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1 Bounded solutions and singular solutions

Throghout this note D is a bounded regular domain in RY, t is the first exit time from D. Denote

by M the set of all finite measures defined on RY. According to ref. [1], for positive measurable function
fondD,

P, exp(- f, X.) = exp{~ v, ), p € M. (1)
where v satisfies the integral equation
w(x) + I § (o(8))ds = ILA(E). 2)
Theorem 1. Let f be a positive bounded continuous function on 3D. Then
vi(x) = - log P,l,‘exp(— £ XL 3)
defines a positive bounded solution of the following (4) and (5):
Lv - ¢(v) =0, inD (4)
el‘i)m_ v(x) = f(a), foralla € 3aD. (5)
Proof. let
z, = [A/(aB)]VD, (6)

Then ¢'(2) — ¢'(=) =0 ,forall z =0 . By (1) and (2), v;(x) given by (3) satisfies
vi(r) + HJ:,W(v‘f(es)) - ¢! (z))ds = ILF(E) - ¢ () I,r.

It is easy to see that v} is bounded. By the same proof of Theorem 1.1 in ref. [2], we know that v} sat-
isfies (4) and (5).
Lemma 1. Let Uy, = {x: | r - 2° I< M|;

zy = (A/B)l/(a—l); ‘ (7)
u(.z‘) =z, + A(MZ _ r2)—2/(a—l)’
where r =1 x — z" |; A is a positive constant. We have

u(r) >, asxr—>a €Uy, 1€ Upy;
Lu+ Au~ Bu* <0 in Uy.
for
A= c(1v MYeD, (8)
where ¢ is a constant depending only on a, the dimension d, L and Uy.
Lemma 2. Suppose that functions u, v==0 are two times continuously differentiable in D. Then
(1) If u, v satisfy the following conditions ( 1 ), (i ) and (i), then v(x) < u(x).
(i) Lv=¢"(v)=Lu- ¢'(u), in D;
i) lrléX}’sup[ v(x)— u(x)]<0 for all a €EAD;
(i) u(x) ==, x€D.
() If u, v satisfy the following conditions { i "), (i ") and (il *), then v(x)=u(x).
(17) Lv - ¢vl('v) < Lu, in D;
(i {iénnqu[v(.z*) ~u(x)] =0foral a € 3D;
(il ") w(x) < 2.
Theorem 2.
v'(x) =- log P:,’(Xi= 0) (9)
is a positive solution of (4) and satisfies the boundary condition
v (z) >+ ® asxr—~a € dD,x € D.
Moreover,
v'(x) = 2,, in D.
The results of Theorem 2 follow from Theorem 1, L.emmas 1 and 2, and the arguments of Theorem
1.2 in reference [2].
Remark. By Lemma 2,if D = Uy = |x: | 2 — 2° | < M| , where °€ RY, then v'(x) defined
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in (9) satisfies

v (z) < z, + A(M? — #2) YD
with A given by (8).

2 The range and the nonextinction property of X'
We denote by @' the range of X!. By (1), v! given by (9) satisfies

exp(- v', u) = P,(X. =0), forp€ M. (10)
Theorem 3. The range %' of X! satisfies
P:‘(.’Jll is compact) = exp(— z,u(R?)), for u € M, (11)

where z, is defined by (7).

Proof. let D, = {x: | x 1< nl, z, be the first exit time from D, and

v{m(x) = - log P‘,‘!Xl. =0}, r € D,.
By LLemma 2.1 in ref. [2],
(#CD,DC(X; =0)C(RCD,) as.
(writing “a.s. "means “P}-a.s. for all x€ M”),
and therefore
in,~ = 0} # {9 is compact} a.s. as n $ o,
By (10),
P, (% is compact) = }ig:P},(X{_- =0) = lim exp{— Vi, p1) - (12)
By Theorem 2 and Remark
22< 'U%,,) < zy + c(1v n)—S/(a—l)(n2 _ r2)—2/(a—1)’

where r = | x]. Letting n = o in the above inequality, we obtain !izg v{n = z2in R%. So (11) follows
from (12).

Theorem 4. Let D, be a sequence of bounded regular domains such that D,C D, ,, and D, # RY,
and let 7, denote the first exit time from D,. Then

(1) there exists a random variable Z! such that

’!i*rg(l.Xlr): = Z' a.s.

and the limit does not depend on the choice of D, .

(i) X"is not extinct in the sence of

P(Z'=0)<1 forally € M. (13)
Proof. By (1) and (2) we have
P, exp(- zz.Xt) = exp(— ul, p), - (14)

where
ui(x) + H:J;-Sbl(“i(fs))d-‘ = z,.

By Theorem 1, u! is a positive bounded solution of (4) in D, having the boundary value z,. Since
u(xr)=z, is a solution of (4) in R®and Lu =0, it follows from Lemma 2 that u!(z) = z,. So (14)
can be rewritten as

P}‘ exp(— z,, X:) = exp{— z;. ), (15)
by which exp{— z,, X i) is a bounded martingale. Bythe martingale convergence theorem, }132 a, x {,)
exists P},—a.s. for every p€ M. Let

Z' = lim med(1, X} ) .
Then

lim (1, Xi) =Z' a.s.
It is easy to check that the limit does nc;t depend on the choice of D, .
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Letting n—>9%0 in (15), we get
PL exp(— 2z, * Z') = exp(— z,, p),
which means (13) holds.
3 Connections between X' and X2

Lemma 3. Let f be a bounded measurable function on @ D. Then the following integral equation
(16) has at most one positive bounded solution

w(x) + IL[ 4(u(e))ds = ILA(E). = € D. (16)
Theorem 5. For every positive Borel function f on D,
P} (exp{~ f, X})/%" is compact) = P2(exp{(- f, X2)). an
Proof. Step 1. Suppose that f is bounded. Let
vi(x) = - log P,’,‘ exp{— f, X1); (18)
vi(x) =~ log P} exp(- f, X%, =z € D. (19)

Then v lf is a bounded solution of integral equation (2), and 'v} is a bounded solution of integral equation
(16). It is easy to check that v{,, .,) ~ % also satisfies (16), where z; is defined by (7).

By Lemma 3,

'U%f”z) -2y = via. (20)

Using (11), (18), (19) and (20), we can obtain (17) holds for the positive bounded f.

Step 2. If f is a positive function, (17) holds for f A n. Letting n—>%0, we know that (17) holds
for f.

Corollary 1. PL(Z' = 0) = e #/8; PL(Z' = ®) =1- 4B,
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