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Abstract The range and the nonextinction property of a supercritical su'perdiffu~ion and solutions of its corresponding differential 
equation are studied. It is pruved that under a suitable condition, the conditioned superprocess of the supercritical superdiffusion is 
a subcritical superdiffusion. 
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LET L be a uniformly elliptic differential operator in R ~ ,  and € = ( €,, II,) be a diffusion with the gener- 
ator 1, . For constants A ,  B > 0 , and 1 < aG2,  let 

# ' ( z )  = - A z + B z m ; -  (lZ(z) = ( a - l ) A z + B z m , z E @ .  
Denote by X'  = ( X f  , X j, P : )  the superdiffusion with parameters ( I*,  + I ) ,  and by x2 = (x:, x:, P i )  
the superdiffusion with parameters ( I - ,  (0'). We discuss the range and the nonextinction property of su- 
percritical superdiffusion X' and solutions of its corresponding differential equation. We also obtain a theo- 

rem on the relationship between X 1  and x2. 
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1 Bounded solutions and singular solutions 

Throghout this note D  is a bounded regular domain in R d .  T is the first exit time from D .  Denote 
by M  the set of all finite measures defined on R d .  According to ref. [ I ] ,  for positive measurable function 
f on a D ,  

P:, e x d -  f, ~ 5 )  = exp(- v ,  ,u), p € M .  ( 1 )  
where v  satisfies the integral equation 

Theorem 1 . Let f be a positive bounded continuous function on a D  . Then 
V ; ( X )  = - log P: exp(- f ,  x',) 

defines a positive bounded solution of the following ( 4 )  and ( 5 )  : 
Idv - + ' ( v )  = 0 ,  in D  

lim ~ ( x )  = f ( u ) ,  for all a E a D  
I I ) .  r - u  

Proof. Let 
z i  = [ A / ( ~ E ) ] " ( ~ - ' ) .  

  hen + ' ( z )  - + ' ( z , )  > o ,for all z  2 0 .  By ( 1 )  and ( 2 ) ,  v>(x )  given by ( 3 )  satisfies 

It is easy to see that v: is bounded. By the same proof of Theorem 1 .1  in ref. [ 2 ] ,  we know that v:sat- 
isfies ( 4 )  and (5) .  

Lemma 1. I R ~  UM = I.*: I x - so I < M I ;  
z2  = ( ~ / f j ) ' / ( a - l ) ;  (7) 

u ( x )  = Z 2  + I\(M' - r 2 ) - 2 / ( a - 1 ) ,  

where r  = I x - x0 I ; A is a positive constant. We have 
U ( I )  + 00, as s-+ u E a U M , x  E U M ;  

L u + A u - B u a < O  in U M .  
for 

A = c ( 1  V M ) ~ ' ( ~ -  I ) ,  (8) 
where c is a constant depending only on a ,  the dimension d ,  L and U M  . 

Lemma 2. Suppose that functions u , v>O are two times continuously differentiable in D . Then 
( I ) If u  , v satisfy the following conditions ( i ). ( ii ) and ( iii ), then v (  x )  < u ( x ) .  
( i ) 1-v- + ' ( T I ) > I - u  - + ' ( u ) ,  in D ;  
( i i  ) lirn sup[v( .~ . )  - r c ( s ) ] < O  for all a € a D ;  

,€ 11, r -a 

( i i i  1 U ( X )  2 x € D  . 
(11) If u ,  v satisfy the following conditions ( i '), ( ii ') and ( iii '), then v ( x ) > u ( x ) .  
( i ' )  1-7, - + ' ( v )  < 1-u . in D ;  
( ii ' >  lim sup[v(.r) - u ( s ) ]  > O  for all a € a D ;  

7 €  I ) ,  r -u 

( iii ') U ( X )  < =?. 

Theorem 2. 
v l ( x )  = - log P: ( ~ f .  = 0 )  

is a positive solution of ( 4 )  and satisfies the boundary condition 
v l ( x )  -++ 00 as x -+ a  € a D ,  x € D .  

Moreover. 
v L ( x )  > z 2 ,  in D .  

The results of 'Theorem 2  follow from Theorem 1 ,  Ixmmas 1  and 2 ,  and the arguments of Theorem 
1 .2 in reference [ 2  ] . 

Remark. By 1-ernrna 2,if 11 = UM = Is: I r - x0 1 < MI ,where xO€ R ~ ,  then v l ( s )  defined 
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in (9 )  satisfies 

v l ( r )  < z2 + I (  M~ - r2)-2/(a-1) 

with I given by (8) .  

2 The range and the nonextinction property of X' 

We denote by ?p the range of X' . By ( 1 ) , v' given by (9)  satisfies 

exp(- v l , p )  = P:(XI, = O), for ,ti € M. 
Theorem 3. The range 2' of X' satisfies 

~b(?lliscompact) = exp(- z z r ( R d ) ) ,  f o r p  € M, 
where z2 is defined by (7) . 

Proof. Int 11, = 1 r : I r I < n 1, r, be the first exit time from D, and 

v f n ) ( x )  = -  log P: I X ;  = 01, r E D,. 
' "  

By Lemma 2 . 1  in ref. [2] ,  
( ~ % l ~ D D , . , ) C ( X ~  = O ) C ( ~ ' C C , )  a.s. 

(writing "a. s. "means "PL-a.s. for all ,u€ M"),  
and therefore 

1x5. = 01 f { @  is compactl a.s.  as n f 0 0 .  

BY ( l o ) ,  
P:(gl is compact) = limPZ(X', = 0)  = lirn exp(- v{,),,u). 

I -- I -- (12) 

By Theorem 2 and Remark 
2 -2/(o-1) 

2 2  < vi,) < 2 2  + ~ ( 1  V n)-3/(a-')(n2 - r ) . 
where r = I x I . Letting n + w in the above inequality, we obtain lim v{,, = zz in Rd .  So ( 1  1 )  follows 

" -- 
from (12) .  

Theorem 4.  Let D, be a sequence of bounded regular domains such that D, c D, + , and D, f Rd, 
and let r ,  denote the first exit time from D,. Then 

( i ) there exists a random variable 2' such that 
lim(1.X:): = 2' a.s. 
I- - 

and the limit does not depend on the choice of D, . 
( li ) X1 is not extinct in the sence of 

P:(z' = 0 )  < 1 fora l lp  € M .  
Proof. By ( 1 ) and (2)  we have 

P: exp(- z2. x:.) = exp(- u',, ,u), 

where 

U ; ( X )  + I Z z ~ ~ # l ( u k ( € s ) ) d . ~  = z2 .  

By Theorem 1, u f, is a positive bounded solution of (4)  in D, having the boundary value z2. Since 
u ( x ) ~ z 2  is a solution of (4 )  in R d  and 1,u 0 . it follows from Lemma 2 that u ' , ( r )  = z2. So (14) 
can be rewritten as 

P: exp(- z2, x:.) = exp(- z 29 P )  9 (15) 

by which exp (- z2. X :  ) is a bounded martingale. By the martingale convergence theorem, lim (1, x', ) 
" -- 

exists ~ : - a .  s. for every p € M . Let 

2' = l i  med(1, x i m ) .  
Then 

lim(1.X:) = 2' a.s. 
* -- 

It is easy to check that the limit does not depend on the choice of D,. 
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Letting nam in ( 15). we get 
1 P,  exp(- 22 . 2 ' )  = exp(- zz,  p ) ,  

which means ( 13) holds. 

3 Co~ections between X' and X' 

Lemma 3. Ixt f be a bounded measurable function on a D .  Then the following integral equation 
( 16) has at most one positive bounded solution 

Theorem 5. For every positive &re1 function f on D ,  

P:(exp(- f ,  x:) is compact) = p;(exp(- f ,  xZ,) ) . (17) 
Proof. Step 1 .  Suppose that f is bounded. Let 

V;.(X) = - log pi, exp(- f ,  Xi) ; (18) 

v:.(x-) = - log P: exp(- f ,  x Z , ) ,  r E D. (19) 

Then v: is a bounded solution of integral equation (2) ,  and v: is a bounded solution of integral equation 
(16).  It is easy to check that ~ f , , ,~ ,  - z2 also satisfies (16),  where z2 is defined by (7). 

By Lemma 3, 

vtf+*J - 22 = v: . (20) 

Using ( 1 1 ) , ( 18). ( 19) and (201, we can obtain ( 17) holds for the positive bounded f .  
Step 2. If f is a positive function. (17) holds for f A n .  Letting n-00,  we know that (17) holds 

for f .  
Corollary 1. P:(z' = 0) = = - * I B ;  P:(z' = a) = 1 - e-A'B. 
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