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Abstract The authors study a class of solutions,namely, regular solutions of the Schr&.dinger
equation (}A + ¢)u = 0 on unbounded domains. They definite the regular solutions in
terms of sample path properties of Brownian motion and then characterize them by an-
alytic method. In Section 4, they discuss the regular solution to the stochastic Dirichlet
problem for the equation (1A + ¢)u = 0 having limit « at infinity.
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1 Introduction

Let {X(),t > 0} be the Brownian motion in R?,d > 1.P, and E, denote the probability
and expectation under X(0) = z. Let D be a domain in R%;dD = D N D¢ the boundary of D,
where D is the closure and D¢ the complement of D. For any Borel set E we put

g =inf{t >0, X(t)gE} (inf¢= oo),

namely, the first exit time from E. The class of points which are regular for F will be denoted
by E” (see [6]). Let the class K4 and K% be defined as in [1]. For g € K¢ (if g is given only
in D, then we assume g(z) = 0 for z € R® — D ), as an abbreviation we put '

t

eqlt) = exp /0 o(X(5))ds.
For f >0 on 8D, we put forz € D :
u(q, f;2) = Ez(eq(r0)f(X(7D)); 7D < 00);  wy(z) = Ez(eq(7D))

provided it is well-defined. The function u(g, 1;-) is called the gauge for (D,q) . We say that
the gauge theorem holds for (D, q) if that u(g,1;-) # 400 in D implies that u(g, 1;-) is bounded
in D (see [4]).
Recently,many authors have been interested in the probabilistic treatment of the following
Schrodinger equation:
%Au +qu=0, in D. (1.1)

Where A is the Lapace operator,
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When m(D) < oo (where m denotes the Lebesgue measure) and ¢ € L* (D), Chung and
Raol?l showed that the gauge theorem holds for (D, q) and solved the problem of representing
the bounded solution to the first boundary value problem for (1.1). Subsequently a large class of
g was studied by Aizenman and Simonl!l, which is known as the Stummel-Kato class K;. When
m(D) = oo, the results about (1.1) are very little. Renl”] showed that E.(¢(X (7p))eq(7n); T <
o0) + aE.(eq(Tp); T = oco) is the unique bounded solution to the first boundary value problem
for (1.1) with boundary value ¢, under the condition that w¢(z) is bounded on D (where m(D)
may be +oo ). But generally, the gauge theorem is not true for unbounded domains (see
example in [9]). When the gauge theorem isn’t valid for (D, g), we can not know whether the
bounded solution for (1.1) exists. So in this paper, we will consider a new class of solutions for
(1.1), namely, regular solutions, instead of bounded solutions.

Let C(®(D) and C*)(D), k > 1, denote respectively the classes of continuous and k times
continuously differentiable functions on D, and H(D) the class of Holder continuous functions
(see the definition in [2]).

We say that u is a solution of (1.1), if u € C%(D) and satisfies (1.1).

2 Some Lemmas

Lemma 2.1 Let ¢ € K¥°¢, D be a domain and K be a compact subset of D. there exists
a constant C > 0 which depends only on D, K and local norms A of ¢ such that for any f > 0
such that u(g, f;-) # oo in K, we have

sup u(q, f;z) < C inf u(q, f;z).
zeK zeK

See Zhao [8].
Lemma 2.2 Letg€e K ¢‘,°°, D be a domain and K be a compact subset of D . There exists
a constant C' > 0 which depends only on D, K and local norms A of g such that E.(e,(7p); 7D =
o0) # oo in K, we have '
sup E;(eq(7p); 7p = 00) < C inf E;(eq(7p); TD = 00).
zeK z€K
The proof of Lemma 2.2 is similar to that of Theorem 6 in [8].
Lemma 2.3 Let g€ K"fc , D be a domain. If E.(e;(7p); 7p < 00) # 0o on D , then for
any bounded domain Dg such that Dy C D , we have

sup E:(eq(7D,)) < 00.
z€Do

Proof Let v(z) = Ez(eq(Tp);7p < o0) in D. For any bounded domain Dy such that
Do C D, by the strong Markov property we have :
Ez(eq(1p )I(TD<°O)/'1:TD0) = eq(7p,)v(X(7D,)), = € Do.

1t follows from Lemma 2.1 that C = inf v(z) > 0. So we have

z€Dg

1
sup E {eq4(Tp,)) < c sup E(eq(7p); TD < 00) < 0.
x€Do :L‘EDO

The last inequality follows from Lemma 2.1.
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3 Regular Solutions for Schrodinger Equation

Throughout this paper, D is assumed to be fixed. The class of solutions of %Au +qu=20
will be denoted by S? .

Definition 3.1 u € S9 is said to be regular on D , iff for every z € D,

(1) the limit tlTi{'rcla u(X (t)) exists and is finite a. s. (Py) ;

(IT) the above limit is integrable with respect to Py and
u(z) = E,(tlTim u(X (t))eq(Tp))).x € D. (3.1)
™D
Definition 3.2 u € S¢ is said to be singular on D, iff for every z € D,

‘1%11; uw(X(t) =0, as. (P;). (3.2)

We use S¢ to denote the class of all regular solutions of 3Au + qu = 0 on D, §7 the class
of singular solutions of Au + qu = 0 on D. Clearly, S C $9,57 C §9, and {0} = SN SY.

Let :

Q2{q:q€ Kqn H(D) such that wq(2) 18 bounded in D},

$% £{u € §%u is bounded on D},

S32L(u € §9;3g, € Q such that g, T g and u, € SI" such that u, 1 u},

H é{u € 8% 3uy, u; € S7 and a1,a; € R! such that u = ayu; + agus}.

Remark (1) Ifq€ Q, by Theorem 3.1 bleow, we know S # ¢.

(2) For any ¢ € K4 N H(D), it follows from Theorem 3.6 below that SJ is well defined .

(3)Ifg€ @, then S = {u € $7,Ju, € 57 such that u, T u}.

(4) Regular solutions of Au + qu = 0 are defined in terms of the sample path properties
of Brownian motion. In the following we will show S = S . So regular solutions can be
characterized by analytic method.

Theorem 3.1 Let ¢ € KqN H(D). Suppose u(g,1;) Z oo in D. Then u is a solution of
(1.1) iff

(I) u is locally bounded;

(IT) for any bounded domain Dy such that Dy C D,

u(z) = Ez(eq(7p,)u(X(7D,))); < € Do. ' (3.3)

Proof Suppose u satisfies (1.1) in 'D. Then for any bounded domain Dp such that
Do C D,u(z) is a bounded solution of 2Au + qu = 0 in Do , and u(z) is continuous in D.
It follows from Lemma 2.3 and Theorem 2.3 in [2] that (3.3) holds. Obviously, u is locally
bounded.

Conversely suppose u satisfies (I) and (II). For any bounded domain Dy such that Do C D,
by Theorem 2.1 in [2] and Lemma 2.3, we have

1
§Au+qu =0 in Dy.

So %Au+qu=0inD.
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Before further discussions, let us introduce the concept of “Brownian motion killed outside
D”. let Dy = DU @, the one-point compactification of D . Define a process {X(t),t > 0}
living on the state space Dy as follows-

N X(t) if ¢ ,
x(t) = (t) if t<7p
b if 7p <t< oo

We call X the “Brownian motion killed outside D ”. It follows from Theorem 4.5.2 in [3] that
{X(t),f,,t > 0} is a Hunt process, where F; = 0{X(s),s < t}.
Let
N q(z), if z€D,
q(z) = ,
0, if z=20;

t
o) =exp ([ dR(6)ds), 220
0

Theorem 3.2 Let ¢ € K4 N H(D) such that wy(-) # oo in D, and let u € S9, u > 0.

Then tl%m u(X(t)) exists and is finite a.s. (P:) for each z € D, and u(z) > E;(e,(rp)
™D
-tlTim u(X(t))) € 9.
™D
Proof Let u(d) = 0. For any z € D, by Theorem 6 in [5}, we have {&,(t)u(X (t)), Fe,t >

0} is a supmartingale under P,. It then follows from Theorem 1.4.1 in [3] and its Corollary
2 that for each z € D, tlrlm (eq(t)u(X(t))) exists and is finite a.s. (P;). Since e4(t) > 0 and
™D

tl%m eq(t) = eq(7p) > 0 for any z € D , we have
™D

eg(H)u(X (1)) _ Jim feq (£)u(X (¢))]

lim «(X(¢)) = lim
tTrp

ttrp eq(t) - eq(TD) v a8 (Pe).

Hence tl%f_r; u{X (t)) exists and is finite a.s. (Py).
Let D, be bounded domains such that D, C D and D, 1 D . Then
u = E.(eq(tp,)u(X(7D,))
by Theorem 3.1. Choose z € D, then P,(rp, 1 7p) = 1. Thus by Fatou’s lemma,
u(z) 2 Ez( lim_eq(7p, )u(X(7p,))) = Ex(eq(rp)}%g; u(X(t))),z € D.
By the strong Markov property and Theorem 3.1 , it is easy to check that
E.(eq(mD) tlTi?zl) u(X(t))) € S%

Theorem 3.3 Let ¢ € KN H(D) such that wy(-) # oo in D. Then for any z €
D, tlTim we(X(2)) =1, as. (Py).
™D
Proof Let u(:) = wg(:) . Then u > 0 and u € S? by Theorem 3.1. It follows from
Theorem 3.2 that ‘lTlm u(X (t)) exists and is finite a.s.(P;). Let D, be bounded domains such
™D

that D, C D and D, 1 D. By the strong Markov property we have

Ey(eq(TD)/Frp,) = eq(7D, )u(X(7D,))-
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Letting n — oo in the above equality, for any = € D, we have
lim 4(X(rp,)) = l,as. (P;).
n—o0

Since ‘l%m u(X (t)) exists a.s. (P;) as shown above we obtain tlTim u(X () =1, as. (Pg).
™D To
Theorem 3.4 Let ¢, u be as in Theorem 3.2 except that 4 need not be non-negative but
bounded from below. If in addition i%f wg(+) > 0, then the results of Theorem 3.2 also hold.

Proof Since i%f wq(+) > 0 and u is bounded from below, there is a constant C > 0, such
that

f(z) 2 u(z) + Cwy(z) >0, z€D.
By Theorem 3.1, f(z) € S9. Hence by Theorem 3.2, for any « € D,

tlTim f(X(t)) exists as. (P;) and f(z)> E,(eq(rp)tlTim F(X())).
™D ™o
Since tlTim wg(X (t)) = 1 by Theorem 3.3, we know tl%m u(X(t)) exists a.s. (P;), and
™D T™D
() > Ba(eg(rp) lim u(X(2))), s € D.
tirp

Therefore E.(eq(7D ).‘l%m u(X(t))) belongs to S? by Theorem 3.1.
™D
Theorem 3.5 Let ¢ € Kq4N H(D) such that wg(z) # oo and igqu(-) > 0in D . then
Sicse.
Proof Let go € Q and u € S{°. Then u is a bounded solution of (1.1) and wg,(-) is
bounded on D. It follows from Theorem 3.4 that for any z € D, ‘lrim u(X(t)) exists a.s. (P;)
™D

and u(z) > Ex(eq,(7D) 'lTlm u(X(t))). Since —u € S5§°, we similarly have
. s

—u(z) > —E,(eqo(rp)tlTim (X (t))). Hence (3.1) holds.

™D

If u € 5§, then there exists g, € Q and u, € S7* such that g, T ¢ and u, T u. By the

above result we have '

un(z) = E,(eqn(rp)'lTiirll) un(X(t))), ze€D.
Letting n — oo , since ltiTmu(X ()) exists a.s. (P;) by Theorem 3.4 and u, < u , we have

: c

u(z) < Buleg(rp)) fim (X (1), z € D.

On the other hand, we have again by Theorem 3.4,

u(z) > Ex(eg(rp) im u(X(1))), @€ D.

Hence (3.1) holds for z € D . Thus we have proved S§ C S7 .

By the definition of S , we easily have S§ C S7.

Theorem 3.6 If ¢ € K4N H(D) such that wy(z) # oo in D, there exists g, € @ such
that ¢, T q.

Proof Let D, be bounded domains such that D, C D and D, 1 D. Define

[ 4@ zeDaUiza=) <0},
= 0 z € DE N {z,q(z) > 0}.
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Then for every z € D, gn(z) T q(z) . By the definitions of ¢, , we can easily check q, € H(D)
. By Theorem 4.5 in [1], we have g, € Kq4. Let u,(:) = E.(eg,(7p)). We are now going to show
that for every fixed n, uy is bounded in D.

Since u,(-) < E.(eq(7p)) ,by Lemma 2.1, u, is bounded in D, . Set ||uallp, = Sup un(-) ,

n

and E = D — D,, . Note that E is open and 75 < 1p . For = € E let us put
uf,l)(:c) = E.(eq. (7D ); TE < TD); ui,z)(:c) = E;(eq.(TD);TE = TD)-
We have by the strong Markov property,
u{(z) = Ey(eq, (TE)un(X(78)); T8 < TD).
On the set {rg < 7p} , we have forE gn(X(t)) < 0 and X(7g) € D,, . Hence we have
(@) < llunll,
On the other hand, we have for z € E,
uP(e) < L.
Combining the last two inequalities we have for z € D
un(2) < lunllp, + 1.

So we have proved that for every n, ¢, belongs to Q.
Theorem 3.7 Let g belong to K4 N H(D) such that wy(z) # oo in D. Then S§ D S7.
Proof Take u € S? and ¢, be defined as in Theorem 3.6. Define -

£ = (lim u(X@)V 0 € = (= lim u(X®) V0;

ut = E'.(£+eq(‘r‘1))); u” = E({Teq(mp))s
EX=¢tan; & =6 Am
uth = E-(f:eqn(TD)ﬁ u, = E(&, eq,.(7D))yn = 1,2,3,--+

Then u},u; € SI* . Letting n — oo , it follows from the monotone convergence theorem that
u}l Tut and u; Tu~ asn — oo, hence ut,u” € §§ . Thus

u= E(tl#}; w(X(t))eg(rp)) = ut —u~ € 55.

This completes the proof of the theorem.
Corollary 3.8 Under the conditions of Theorem 3.5,:53 = S¥.

4 Stochastic Dirichlet Problem for Schrédinger Equation on Unbounded
Domains

Definition 4.1 Let g, ¢ be functions respectively on D and D , and let « € R' . u is
said to be a solution of the stochastic Dirichlet problem of %Au +qu =0 for (p,a) , if u€ §?
and for ¢ € D.

tl%g; u(X(t)) = ‘P(X(TD))I(rp<00) +al(rp=00) 88 (Pz)-

© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



No.4' Ren & Wu: REGULAR SOLUTIONS FOR SCHRODINGER EQUATION 393

Theorem 4.1 Let ¢ € K4N H(D),« € R! and let ¢ be a function on dD such that
i%qu(-) >0, u(g, |¢|;z) # oo and E.(eq(7p);7p = 00) £ 00 on D. Then in S§

u(-) 2 E.(¢(X(p))eq(TD); 7D < 0) + aE.(eg(TD); TD = 00)

is the unique solution of the stochastic Dirichlet problem of %Au + qu = 0 for (p, ) .

Proof It follows from Lemma 2.1, Lemma 2.2 and Theorem 3.1 that u € S9 . The proof
of u € S is similar to that of Theorem 3.7. Let D, be bounded domains such that D,cD
and D, 1 D . Set 1, = 7p,,n = 1,2,--- . By the strong Markov property we have for any
€D, ,

Er{[‘P(X(TD))I(rp<oo) + aI(rp:ee)]eq(TD)/fr»} = eq(Tn)u(X(Tn))-

Letting n — oo , we have for any z € D ,

“l_i_{%o eg(Ta)u(X (1a)) = [P(X (D)) (rp<o0) + @L(rp=co)l€q(TD), a.s. (Pz)-

Hence, for any z € D,
nli—IoIolo wW(X(1a)) = (X (D) (rp<oo) + el(rp=c0)s 8.8 (Pr).
By the above equality and u € S§ , we have forany z € D ,
‘1%171; wWX(t)) = (X (D)) (rp<co) + ®l(rp=cc)r 88 (Pz).

So u is a solution of the stochastic Dirichlet problem of 1 Au + qu = 0 for (¢, ) -
The uniqueness can be easily shown by Corollary 3.8.
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