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Abstract The historical superprocesses are considered on bounded regular domains with a complete branching 
form, as a probabilistic argument, the limit property of superprocesses is studied when the domains enlarge to the 
whole space. As an important application of superprocess, the representation of solutions of involved differential equa- 
tions is used in term of historical superprocesses. The differential equations including the existence of nonnegative solu- 
tion, the closeness of solutions and probabilistic representations to the maximal and minimal solutions arr discussed, 
which helps develop the well-known results on nonlinear differential equations. 
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1 Main results 

d d 

In this paper, we assume that L = aij ( x ) - 
a 

+ C bj ( x ) - is an elliptic differen- 
i , j = l  axiaxj a xj 

tial operator on Rd , and the coefficients (a+ ( x  ) ) , ( bj ( x  ) ) satisfy the following conditions. 

(A) ai,(x) = aji(x) ,b,(x) are bounded smooth functions on Rd,  and when 11 x 11 +m,  

11 x 11 11 b ( x )  11 + O ,  where 11 x I/ = : d m ,  b ( x )  =: ( b ~ ( z ) , + * - , b d ( x ) ) ~ .  
d d 

(B) There exists v >O such that, for V 5 E Rd , aij ( x )  &cj ), v C 5:. , V x E Rd. 
i . j = 1  j = 1  

Then L determines a Markov process of Rd denoted by ( E, , 17, ; t 2 0 ,  x E Rd) , which has 

continuous paths and infinite lifetimeL1]. 
m 

We also consider such a continuous function on R' = [0, m) : ~ ( z )  = az + bz2 + I (e-" 
0 

- 1 + uz)n(du) ,  wherea E R1, b E R', and n(du)  isaLkvymeasureon [O,m) satisfying 

Based on ( E , Y )  , we may construct a measure-valued branching process (superpmxs) . To 
this end, we first use MF to denote the space of all finite measures on ( Rd ,?d( R ~ )  ) , and let 

bpQ(Rd) be the set of all bounded positive measurable functons on Rd. Write the integral of 
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f w . r . t p  a s ( p , f ) .  
Following the construction of D y r ~ k i n [ ~ ~ ' ~  , there exists such a superprocess X = { Xt , XrD ; 

P, 1 satisfying the condition that, for V ,u € MF , f € bpg( Rd ) , 
pPe-(x,,f) = ,-(r,u(t)) (1.1) 

where u ( t ) = u ( t , x ) is the unique solution of integral equation 

u ( t , x )  + TI Jt F ( u ( t  - s,Es))ds = TI ~ ( 6 ) .  
0 

(1 .2)  

Moreover, for any bounded regular domain D (in which the definition of regular domain is as 
in refs. [2 ,3  1 ) on Rd , there is a corresponding random measure XrD such that 

pPe-(x,,+) = e-(r,u,) (1 .3)  

inwhichrD = inf{t >O,E, 6 D l ,  9 E bpg(aD) ,and  

The process stated above are called historical superprocess with branching character V. If a>O, 
we call the superprocess subcritical superprocess, and if a < 0 ,  supercritical. 

One of the aims of this paper is to study the limit of { XrD , D C R ~  ) when D is large enough, 

i. e. D f R ~ .  This reflects the information of extinction and non-extinction of the branching par- 
ticle system and superprocess. Another aim of the paper is to apply the superprocess to represent 
the solutions of the involved nonlinear differential equations and then to characterize the non-nega- 
tive solutions by a probabilistic technique. 

Let X=X( 6 ,  Y )  be the stated super-diffusion process, whose branching character Y has a 
general form. D and { D, , n 2 1  ) are bounded regular domains on R ~ .  Define z y  = inf ( z > 0 ,  
T ( z )  > O j .  T h e n w h e n a 2 0 ,  zlIr=O; when a < O ,  O < z y < ~ ,  andif z p = m ,  Y ( z )  is 
monotonically decreasing on z . 

Theorem 1.1 Assume that X is a historical super-diffusion process zerith branching charac- 
ter Y ,  and D is a bounded regular domain on Rd. 

1. If zp< 0 3 ,  and Y satisfies 

Y s > zy,  jr (J:Y( t )dt  ) -ladz < CO, 

then the non-linear differential equation 

has a non-negative solution in D.  Moreover the maximal and  minimal solutions can be repre- 
sented as u,(x)= -logPs ( X ,  = 0 ,  for n large enough) and u-(x)= -logPs (XrD=O) 

= D" 

respectively. Here 1 D, 1 is a sequence of bounded regular subdomains D , D,, f D , but u, 

does not depend on the choice of 1 D, 1 . 
2. If zy < 00 , and !P does not satisfy condition (1 .5 ) ,  even the coefficients ( bj ( x )  ) of L 

satisfy 
( d  - l)u 

(C) Ib(x) i<2dim(D),  VxED. where diam (D)=:sup{ IX-YI : x , y € D I ,  

then there is no non-negative solution for equation (1 .6) .  
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Theorem 1.2.  Assume that Z+ < 03 , and Y satisfies condition ( 1.5) .  Then the solutions 

of Lu = ?P( u ) , u >z+ are closed, i . e . for any bounded regular domain D on R ~ ,  i f  un>zY 
( n 2 1 )  are solutions of the equation in D , and un+u , then u should be a solution of the equa- 
tion in D ,  too. Besides i f  the coefficients of L further satisfy condition (C) , then "satisfying 
condition ( 1.5)  " is necessary. 

~ ~ n k i n [ ~ - ~ I ,  Le  all[^'^], etc. applied historical superprocesses and path-valued processes to 
study non-linear differential equations. However in their works, the nonlinear items of involved 
differential equations were such particular forms as Y ( z )  = z2,  or u1+P(0 < /3 < 1 ) , which cor- 
responds to the special cases of Theorems 1.1 and 1 . 2  with zp  = 0 ,  and in which Y obviously 
satisfies (1.5). We now deal with differential equations using as extensive as possible nonlinear 
items, and study the solutions of nonlinear differential equations using the technique of superpro- 
cess . 

In the following, we describe some probabilistic features of the superprocesses. 
Theorem 1.3.  Let X be a historical super-di ffusion process zenth branching Y , and as- 

sume the bounded reguiur domains Dn .f R ~ .  Then , for 'd p € MF , P,, , a .  s. , Y = lim (x, , 
n-w D,, 

1 )  exists, and P,( Y =o)  = 1 - P,( Y = 0 3 )  = e z p ( p ' 1 ) ( e 0 3 ~ ~ ) .  Moreover 

( i )  i f  z+< 00 , and Y satisfies (1.5) , then P, (X, = 0 ,  for n large enough ) = e-zy(p*l) ; 

(ii) i f  z+ < 03 , but Y does not satisfy (1 .5)  , and the coefficients ( bj (x )) of L satisfy 
condition ( C ) , then P, ( X," = 0,  for n large enough ) = 0. 

n 

Theorem 1.4.  Assume that z + < 00 , and X = ( Xt , XrD ; P, ) is a supercritical historical 

super-diffusion process '~en~th branching character Y. Then the conditioned superprocess is a sub- 
critical superprocess. To be precise , for V p € MF , f € bpQ(Rd) , # € bpQ(2D) , 

p,(e-(xt?f) l i m ( ~ ,  , I )  = 0)  = F,e-(%*f); 
t-- 

~ , ( e - ( ~ r ~ , "  I Iim (xrD, l )  = O) = F,,e-(ii,*O, 
D ~ R ~  

where t = ( Bt , XTD ; F, ) is a super-di ffusion process with the underlying Focess C and the 

branching character defined by 

Theorem 1 .4  implies that the conditioned superprocess under a suitable transformation is a 
superprocess, and the branching mechanism of the latter is also closely related to the original one. 
Actually Theorem 1.4 generalized Evens and O'mnnell's result on conditioned superp- with spe- 
cial branching[71. 

2 Basic lemmas and technique preparations 

Lemma 2.1 (comparison principle) . Assume that zyr < , and D is a bounded regular 

domain on R ~ .  u , v>O are twice differentia functions in D. I f  u , v satisfy (i) Lv(x)  - Y 
(v (x ) )>Lu(x )  - ? P ( u ( s ) ) , x € D ;  (ii)lim, sup[v(x)  - u(x)]<O, V a E a D ;  (iii), u 

ZED z4a 

(x)>z+,  x € D .  Then for V x E D ,  v ( x ) < u ( x ) .  

Proof. Letw(x)=v(x) -u(x) , i f thec la imisnot t rue ,  t h e n D + = { x € D ,  w ( x ) >  
0 1 is not empty. Notice that when z 2 z y ,  Y ( z ) is monotonically increasing on z . So for V x 
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€ D', Lw(x)  2 !P(v(x) )  - Y ( u ( x ) )  >O. By assumption (ii), for Va € aD+, lim, sup 
XED e 5  

w ( x  ) < 0. This contradicts the maximal principle of linear differential equation. Hence the claim 
is true. 

Next we consider the solution u ( 6,  R ; x ) of equation 
Lu - !P(u) = 0 ,  

U I ~ B ( . ~ ~ , R )  = 6 ,  

where B ( xo , R ) denotes the open Ball centered at s o  with radius R . Let v ( x ) = v ( r ) , r = 11 x 

-xo 11  . Then Lv(x )  = A(z)v" ( r )  + m [ ~ ( x )  - A ( x )  + C(x)] ,  whereA(z) = 
r 

xo = (57). 

Suppose that h 1 ( x )  < h2(x)  < < Ad ( x  ) are characteristic values of matrix ( a ~ ) ,  it fol- 
lows from assumptions (A) and (B) that there exists a A > u (A depending on 9 0 ,  but indepen- 
dent of R )  such that, for Vx  Z. R ~ ,  (i)u E h l ( x )  < A ( x )  <Ad(x) < A ;  (ii) y d < B ( x )  
< A d ;  (iii) I C ( x )  I <  ( d  - 1)A.  So B ( x )  - A ( z )  + C ( x )  < 2(d  - 1)A. On the other 

hand, if (b,(x)) satisfies (C), then B ( x )  - A ( x )  + ~ ( x ) > $ ( d  -1).  

Let vl ( 6 , R ; r ) be a solution of equation 

Then Lvl - Y(vl)<O, and by comparison principle, u ( 0 , R ; x )  < v l (6 ,R ;  11 x - so (1 ) , x  
€ B(xo,R).  

Let v2 ( 0, R ; r ) be the solution of 

Then Lv2- !P(v2)>0. Hence, by comparison principle, u ( 6 , R ; x ) > v 2 ( 8 , R ;  11  x-so 11 ), 
x € B ( x o , R ) .  

Thus under assumptions (A), (B) and (C) , 
V ~ ( O , R ;  II - xo I I  ) < u ( ~ , R ; x )  G V ~ ( O , R ;  11 x - 11 ), v x  E B ( x ~ , R ) .  

(2.4) 
We are to estimate the solution of (2.1).  It suffices to estimate the following equation (in which 
h >O is constant) : 

and so 

Since 6>zva t  (2 .5) ,  by Lemma2.1, v ( r )>z ry ,  r € [ O , R ] .  This implies that v'(r)>O 
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and v ' ( r )  < ~ r l - d + ( v ( r ) ) J ~ ~ - ~ d s  = " Y ( v ( r ) ) .  Again, by (2.51, we have 
0 d 

This shows that the conditions v' , v " 3 0  at ( 2 . 5 )  are inherent rather than imposed. Further- 
v ( r )  

more, by ( 2 . 7 ) ,  let Q ( v ( r ) , v ( r o ) )  = I Y ( z ) d z .  Then 
v(r,,) 

Since ~ ' ( 0 )  = 0 ,  v (r )>zty .  I f  v ( 0 ) > z P ,  then, by ( 2 . 6 ) ,  v '(r)>O, v ( r ) > v ( O ) .  Notice 
that if z > z y ,  W ( z )  > O .  SO Q ( v ( r ) ,  v(O))>O, and by (2 .8 ) ,  we have 

~r E ( o , R ) , ~ J ~ : ~ : Q - ~ ~ ( ~ , ~ ( o ) ) ~ ~  < r .  (2.9)  

Similarly, if there exists an ro<R such that v ( r o ) > z r y ,  then Q ( v ( r ) , v ( r o ) ) > O ,  and so 

7-<- 2A ~ - ' ~ ( z , v ( r ~ ) ) d z + r o ,  r 2 r o .  (2.10) 

Hence combining (2.10) with (2 .4)  , we have 
Lemma 2.2. Assume that zty < u ( 8 ,  R ; x ) is a non-negatiue solution of Lu = Y 

( u ) ,  ~ l a ~ ( ~ ~ , ~ ) = O .  Then u ( 8 , R ; x ) < v l ( 8 , R ;  1 1  x - x o  1 1  ), and if  ( b j ( x ) )  satisfies 

( C ) ,  v 2 ( 8 , R ;  1 1  x - x o  1 1  G u ( 8 , R ; x ) .  Besides, foralL8, R a n d s o ,  bo thv1(8 ,R; r )  and 

v 2 ( 0 , R ; r )  satisfy (2 .9 )  and (2.10) 

Proposition 2.1.  Assume that zty < co , v> zty is a rotatidn-invariant soLution of Av = 

AY ( v ) ( A  >0) on Then v= zty i f  one of the foll-ng conditions holds : ( i)  v is bounded 
on Rd ; ( i i )  Y satifies condition ( 1 . 5 ) .  

Proof. Suppose that there exists ro>O such that v ( r o )  > zp  . 
1 )  I f  v ( r ) < c ( V r 3 0 ) ,  where c isconstant. For r>ro ,  from (2.10) it follows that r 

~ - l ~ ( z , v ( r o ) ) d z  + ro < 03. Let r f 00 ,  which leads to a contradiction. 

mJm  in(,, 2 )  I f  Y satisfies(1.5), similarly, by (2 .10 ) ,  for V r > r o ,  r<-  
2A v(ro)  

-v( ro )  )dz + ro < 03. But when r+m, this is impossible. 
Hence, under assumption 1 ) or 2 ) , v ( r ) zty , V r >O holds. 
Lemma 2.3. Assume that z y  < 03 , and let D be a bounded regular domain on Rd . f is a 

non-negative bounded continuous function on aD . Then u ( f ,  x ) = : - logPs e - ( x r D ' f )  is a 

bounded solution of Dirichlet problem Lu = W (  u ) , u I ao = f .  Moreover, i f f  >zp ,  then u ( f , 
x )  is the unique solution satisfying u>zy. 

Proof. It suffices to notice that when z y  < 03, by (1 .4)  , u ( f  , x ) is bounded in D . The 
m i n  is the same as in reference [ 2 ] .  

Lemma 2.4. Assume that z < 03. D is a bounded regular domain . If u, > z y  ( n 2 1 ) 
are solutions of Lu = W ( u ) in D , u,+u , and u, ( x  ) are Locally uniformly bounded in D 
( which means , for any compact subset K of D , u, ( x ) are uniformly bounded for x E K ) , 
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then u should be a solution of Lu = V ( u  ) in D .  
Proof. Take a small ball B ( xo , r ) in D such that B ( so ,  r ) C D  . By the hypothesis, u, 

areuniformly boundedonB(xo,r), andforx€aaB(xo,r) ,  u , (x)>zY(n = 1,2,..-). Soby 
Lemma 2 . 3 ,  u, ( x ) can be expressed as 

U. ( x  = - logpa e-(X~e~zo,,~ ),u.(.), € B(x0,r) .  

Let n+m . Then u ( x  ) = - logPs e-(x~B,,,,,*un(')) , x E B ( x o , r ) .  Again, Lernrna2.3 and the 

arbitrariness of B (xo , r ) C D  show that u satisfies Lu = '3T( u ) in D.  

Lemma 2.5.  Let 1 D, , n 21 1 be a sequence of bounded regualr domains, and D, .f Rd 
(n .f Oo 1. Then , under P, , lim ( xTD ,1)  exists ; moreouer the limit does not depend on the 

n+m 

choice of { D,, n > l \ .  
Proof. Applying the special Markov property, we see that for V p € MF , when a 2 0,  

{ e-('r ") , n 2, Pp \ is a bounded submartingale; when a < O  , zy = m , the random sequence is 
"* 

positive supermartingale; and martingale when a < 0,  and zy < . So in any case, lim (x, ,1) 
,+- D" 

a. s. exists. Assume that j D l ,  1 2 1 1 is another sequence of bounded regular domains with 

f Rd ( 1 f m ) . Then we take a subsequence { Dl of D, 1 and a subsequence 14 1 of 14 1 
such that Dkl C Dl, C Dk2 C DIZ C .-.. Then the procedure above actually implies that (X, , 

0" 

1 ) , n > 1 \  and l ( X T D  , I ) ,  n 2 1 /  havethesamelimit (w.r. t .  P,a.s.) .  
n 

3 The proof of Main Theorems 

Proof of Theorem 1.1. ( 1 ) If zy < 00 , let UD ( 8 ,  x ) be a non-negative solution of Lu = 

P ( u ) , u I aD = 8 ( 8 > zy ) . It follows from comparison principle that uo ( 8, ) is increasing on 8. 
And define uD(x)  =: limuD(8,x). 

6-- 

On theone hand, let v l ( 8 , R ; r )  be thesolutionof (2.2) anddefinevl(R,r) = limvl(8, 
e-- 

03 

R ; r ) .  Forgiven ro E [O,R),  r E [ r o , R ) ,  it follows from (2 .  10) that r < ~ A S  dz 
0 

P ( 8 )+ro ; this leads to a contradiction. So v 1 ( R , rO)  < , and the arbitraritness of r o  shows 
vl(R , r ) < m , r €  [O,R).  

On the other hand, let z0 € D ,  i > 0, B ( x o , r )  C D .  Since uD(8,x)  is a non-negative 
solution of Lu = Y( u ) , u l aD = 8 ( 8 > zy) , there exists a constant MZo,; ( 8)  > 0 such that 

UD( 6 ,x ) l as(xo ,;, < Mxo,; ( 8)  = : 8 .  So comparison principle implies that for V x € 
- - 

B ( x o , r R ) ,  e >  LY, U ~ ( ~ , X ) ~ V ~ ( ~ , ; ~  II x -xo  II )<kli1~~(8,~;rR) = v1(;;;R)< 

CQ. Applying Lemma2.4, uD(x)  = l imuD(6,x) satisfies Lu = Y ( u )  i n ~ ( x ~ , ; R ) .  Thear- 
e-- 

bitrairiness of B (xo , r)  C D shows that LuD = P (  UD ) in D . To check the boundary condition, 
it suffices to notice that, for V a E aD , 

lim u D ( x ) =  lim l i m ~ ~ ( 8 , x ) > l i ~ ~ n f ~ ~ ~ ~ ~ u ~ ( 8 , x ) = m .  
x + o , x E D  t - r a . x € D  B - m  

We actually show that uD is a non-negative solution of (1.6).  
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Let VD ( x ) be a non-negative solution of ( 1.6) .  Then, by comparison principle, V x € D , 
u ~ ( 8 . x )  <VD(X)  (6  > zp) ,  andO<uD(x) = ktktuD(8,x)<vD(x),  x E D .  This implies 

that UD is the minimal non-negative solution of ( 1.6) .  Moreover, by Lemma 2.3,  u~ ( 8 ,  x ) = 

- l ~ g ~ ~ ~ - ( ~ ~ ; ~ ) ( e  > zp ,x  E D ) .  SO umin(x) = uD(x)  = lirn[- l ~ ~ ~ ~ e - ( ~ ~ ~ * ~ ) ]  = 
e--00 

- 1 0 g P ~ ~ [ x ~ ~  = 01. 

On the other hand, let { D, , n >l 1 be increasing regular domains satisfying D, C D ( n 2 
1) .  In a similar way, applying Lemma 2.4 we can show that u~ ( x )  = - logPs [X, = 01 satis- "" 
fiesLu = Y ( u ) ,  u laDn = 00. Hence, by comparison principle, V x  E D,, vD(x )<uDn(x ) ,  

n = 1 ,2,  Applying the special Markov property of superprocesses, we have { X, = 0 1 G 

{X, =0~(where~,~~,+~,n>1),namely{u~(x),n>1~isdecreasingonn.SoVx 
D.+1 

E D , VD ( x ) < lim UD" ( x ) = - logPs ( { XrD = 0 ,  for n large enough 1 ) , which implies that 
n-m 

umax(x) =:- 1ogPsx({xrD = 0 ,  for n l a r g e e n ~ u ~ h / ) > ~ ( x ) .  

We are to show that u, satisfies (1 .6) .  For any given N>1, if n > N ,  uDn ( x  ) satisfy 

Lu = Y ( u )  in DN, anduD ( x ) <  uDN(x) ,x  € DN. Hence, fo rx€DN,  Lemma2.4 implies 

that u,(x) = limuDn(x)isalsoasolutionofLu = P ( u ) i n D N .  ~ e t ~ ~ f  D.  Thenu,(x) 
n - a  

sa t isf iesLu=Y(u)inD.  Andfo raEaD,  lim u,(x)> lim vD(x)=m.Thisshows 
s - + a . s E D  z E a , z E D  

that u-( x ) is the maximal solution of (1.6). 
(2) Assume that zp< , Y does not satisfy ( 1.5) , and ( bj ( x )  ) satisfies condition (C) . 

If ( 1.6) has a non-negative solution VD ( x ) , then from the proof of ( 1 ) it follows that, vD ( x  ) 
> - logpa ( XTD = 0) . But the latter may not be a solution of ( 1.6)  . Take B ( xo , R ) such that 

I 

D C B ( xo , R ) . Then special Markov property implies that, Pa a. S. ( XrD = 0) C (XrB(Zo,r) - - 
Z 

O), and vD(x) >- logPs (X, = B ( Z ~ , R )  = 0) = : UR(X) .  Let u ( 8 , R ; x )  beasolutionof (2.1). If 

8 > z y ,  comparison principle implies that uR(x )  > u ( B , R ; x ) , x  E B ( x o , R ) .  But, by Lern- 

ma2.2,  u ( 8 , R ; x ) > v 2 ( 8 , R ;  11  x - X O  11  ) .  % u R ( x ) > v ~ ( ~ , R ;  11  x-xo  1 1  ) ( x  B(xo, 
R )  , 8  > zp) , where v2 is the solution of (2.5) ( A  =2/v). 

In the following we are ready to show that if 8 f m , then v2 ( 8 ,  R ; r ) f . Since v2 ( 8 ,  
R ; r ) is increasing on r , it suffices to show limv2(8, R ;O) = m . Otherwise, suppose that 

5.- 

v2(8,R;O) f c < m (when 8 f a ) .  Let A = 2/v at (2.  9 ) ,  and r - t R .  Then je 
v2(8,R;O) 

2 
[Jz 

Y (  s )ds] l n d z  < -R . And letting 8+m, we have 
v,(B,R;O) & 

Notice that, when6 > z p , v 2 ( 8 , R ; r ) > z Y .  Weclaimthatc = limv2(8,R;O) > z y .  Other- 
B-rm 

wise, if c = zp  , then v2 ( 8 ,  R ; 0 ) -- zp  , V 8 > zp  . But applying historical super-Brownian mo- 
tion X = ( -%, , -%, , p, ) , whose branching character Y ( z ) = 1 / U P (  z ) , to solve differential 

1 equationis-Av = Y ( v ) ,  v IaS(z,,R, = 6' (which is eq. (2 .3) ) ,  we have v ( x )  = v2(8,R;  2 
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zp  , then PC, [ x ; ~ ( ~ ~ , ~ ~  = 01 = 1. But by a differential operation of ( 1.3)  and (1.4) , we have 

P, ( x ,  , #) = (,u , x# ( erD) ) . Particularly, (X;B(zO,K, , I )  = ( 8x0, 1) = 1. This leads to a 
'0 

contradiction, so c > zp . 
On the other hand, since ?P( s )  (s  > zp) is a strictly positive continuous function, condition 

(1.5) is actually equivalent to the statement that there exists a constant so > zp  such that 

[Jz ?P(s)ds] -lRdz < a. So (3.1) implies (1.5).  But this contradicts the assumption of theo- 

rem. So under the assumption of (2) there is no non-negative solution for (1.6). 
ProofofTheorem 1 .2 .  Let u , ( x ) > z p ,  n 2 1  besolutionsof (1 .6 )  (whereD i s a  

boundedregulardomain), u , ( x ) + u ( x ) ( n + m ) .  For V x E D ,  take a small ball B ( x o , r )  

such that B ( xo , ; ) C D .  By Theorem 1.1 and comparison principle, u, ( x  ) < - logPs (XrB(zo,;, 
Z 

= 0)  , x € B ( s o ,  ; ) . So u, ( s ) are locally uniformly bounded in B (xo  , ; ) , and by Lemma 
2.4,  u (s ) satisfies Lu = ?P ( u ) in B (LO, i ) , which means that u is a solution of the equation. 
So the solutions of equation are closed if zT< GO and ?P satisfies condition (1.5). 

Next we show that when the coefficients of L satisfy (C) , " ?P satisfying (1.5)" is neces- 
sary for the closeness of solutions. To do so, we give an example, in which Y does not satisfy 
(1.5) and the solutions are not closed. In fact, let uD(k , x )  be the solutions of Lu = ?P(u) , u 
1 JD = k (k > zp)  . It follows from the proof of Theorem 1.1(2) that if Y does not satisfy (1.5) , 
l imuD(k,x) = -  logpa ( X T D  = 0) r m, and it is not asolutionof L u = Y ( u ) .  
k-m I 

Proof of Theorem 1.3. By Lemma 2.5, Y = lim (xrD , I )  a. s. exists, and does not de- 
D" t R~ n 

pend on the choice of ( D, , n 2 1  1 . In the following, we let D, = B (0, n ) . 
(1 ) If zp< then ?P( z ) is decreasing on z . It follows from (1.3) and (1.4) that 

IZ,epY = * A m  l i m ~ e ~ ~ ~ , ~  < n-m limexp - 1 - 1 B o , n ] ( d x )  = 0 ,  

i.e. P , ( Y = m ) = l .  
(2) If z l y < a ,  let u , (8 ,x) (8>zp)  be the unique bounded solution of Lu = ?P(u),  u 

laB(O,n)  = 8. Then u,(O,x)>zp, and ~ , e - "  = IimE e-'('. B(O,n) .I) = lirne-("lun(e*')) 
n-- 

( 8  > 
zp) .  Ontheonehand, let v l ( 8 , n ; r )  be thesolutionof (2.2) (whereso=O, R = n ) ,  which 

1 
also satisfies Av = -?P(v), v l aB(0,,) = 8. Noticing that, for 8 > zp, zp < vl(O, n ; r )  < 2A 
8 ,  and v1(8 ,n ;  IIx 1 1 )  isdecreasingonn, weclaimthatlimv1(8,n; IIx I()isaboundedso- 

n-m 

1 lutionofdv = - ? P ( v ) i n ~ ~ .  Toshowthis, takeanintegerN, if n 3 N ,  v1(8,n;  (I x I( ) i s  
2A 

1 
asolutionof Av = -Y(v) in B(0 ,N) .  Lemma2.4 shows that l imvl(8,n; 11 x 1 )  ) is alsoa 2A n-- 

1 
solution of Av = -?P(v) in B (0,  N) , and the arbitrarity of N>1 implies that it is even a solu- 2A 
tion on the whole space. So by Proposition 2 .1  , lim v1( 8 ,  n ; r ) z p  . But it follows from wm- 

n-m 
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parison principle that z p <  un(6 ' ,x )<  v l (O,n ;  1 )  x 11  ), and l i m u n ( 9 , x ) ~ z y .  S o ~ , e - ~ '  = 
n-00 

e-Zy(,*l) ( v 6' > zP). Letting 6' ? m , we get P, ( Y = 0)  = e-"~("~ ' ) .  Again let 0 J zp. Then 

EpepzyY = E,epeY . Hence 

P,[ Y = 01 + P , [ ~ - " ~ ~ , O  < Y < m ]  

= P,[Y = 01 + P , [ ~ - ' ~ , O <  Y < m] ( V 9  > z y ) ,  

whicimpliesP,[O< Y < a ]  = OandP,[Y = 01 = 1 -P,[Y = m ]  = e-"o(p9'). 
( i) Assume that z p < , and P satisfies ( 1 . 5  ) . By special Markov property, { XrB(o, n) = 0 1 

1 x r ~ ( ~ , n + l ~  = O}(n  > I ) ,  andso 
P,[Xr B(o ,n )  = 0,  for n large enough] = E, lim lime-('.. ,,,. ) l o )  = lim lime-(p*un(e.')). 

n-00 +a n-m 

Ontheother hand, let v l ( a , n ; r )  = l i m v l ( 8 , n ; r ) ,  where v l ( O , n ; r )  is the solutionof 
8-00 

(2 .2)  w i t h R = n .  FromtheproofofTheorem1.1, it followsthat v l ( x ) = v l ( m , n ;  1 1  x 1 1 )  
1 

satisfies Av = - P ( v ) ,  v laB(O,n)  = 03. Since v l ( m , n ; r )  isdecreasingonn, l i m v l ( m , n ;  2 4  n-m 

1 / I  x / I  ) exists, and a similar way as (2) shows that it is a solution of A = - P ( v )  in R ~ .  Fur- 2A 
thennore, by Proposition 2 . 1  , we have lim v 1 ( 03 , n ; I I x 11  ) -- ZY. Hence comparison principle 

n-rm 

implies that z p  < un(6 ' ,x)  < v l ( - , n ;  1 1  x 11  ) ( x  E B ( O , n ) ) ,  and so lim limun(O,x) = 
n-m 

zp .  This shows that P, [ X,B(o = 0 ,  for n large enough] = e-%(p9l). 
, n 

(ii) In the proof of Theorem 1.1, it is proved that, if zy < 03 and the coefficients of L sat- 
isfy (C) , and if ly does not satisfy ( 1.5)  , then P8 ( XrD = 0) = 0 ,  x € I), for any bounded reg- 

ular domain D . So, by special Markov property, we have P, [for n large enough, XrBe , = 0 1 = 
.n 

limp, [ XrB(o,n, = 0 1 = 0 ,  and the proof of Theorem 1.3 is completed. 
n-- 

lim (xrD , I )  = 0 ) )  = e - ( p ~ " ( ) + z ~ ~ . ) - z ~ )  , where u ( $ +  z V , * )  is 
Dn t R~ 

the uniquepositiitivesolutionofu(++zy,r)+ S r D ~ ( a ( + + z v , e ) ) d s  = f ( ~ , , ) + z p .  
0 

Let w ( x )  = u ( +  + z y , x )  - zy>O. Then w ( x )  + IT j r D P ( w ( ~ r )  + zy)ds = 11 f (frD).  - 0 

Defining P ( z ) = : P ( z + z p ) ( z > O ) ,  wemay check that it has aformas (1 .7 ) ,  and w ( x )  
satisfies 

w ( x )  + TI x JrD@(w(&))ds  o = TI f (4). 
Lemma 2.3 implies that .re, ( x  ) is a bounded non-negative solution of Lu = *;i;( u ) , u I ao = # , 
and so is - 1ogF6 e .('rDyB). SO by comparison principle, we have w ( x )  = - logpa e-(jirDpb). 

~ e n c e  P, (e-(xrD*d) I lim (x,~, ,1) = 0)  = p,e-(%*O. In the same way we can show that 
n+m 

~ , ( e - ' ~ t * f '  I l i m ( ~ ,  , I  = 0)  = F,e-(%*I)). 
t-m 
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