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Abstract

Let Z(0,∞)
t be the point process formed by the positions of all particles alive at time t

in a branching Brownian motion with drift −θ and killed upon reaching 0. We assume
θ ∈ [0,

√
2) and study the asymptotic expansions of Z(0,∞)

t (A) for intervals A ⊂ (0,∞)

under the assumption that
∑∞

k=1 k(log k)
1+λpk < ∞ for some large λ. These results

extend and sharpen the results of Louidor and Saglietti [J. Stat. Phys, 2020] and that
of Kesten [Stochastic Process. Appl., 1978].
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1 Introduction and main results

1.1 Introduction

A branching Brownian motion with drift is a continuous-time Markov process defined
as follows: At time 0, there is a particle at site x and it moves according to a Brownian
motion with drift −θ, where θ ∈ R. After an exponential time of parameter 1 independent
of the movement, this particle dies and splits into k offspring with probability pk. Each
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Asymptotic expansion for branching killed BM

of the offspring independently repeats its parent’s behavior from the death-place of its
parent. This procedure goes on. We use Px and Ex to denote the law of this process and
the corresponding expectation operator. Let N(t) be the set of particles alive at time t

and for each u ∈ N(t), we will use Xu(t) to denote the position of the particle. For s < t

and u ∈ N(t), we will also use Xu(s) to denote the position of the ancestor of u at time s.
Suppose now that x > 0 and that, once a particle hits (−∞, 0], we remove it (along

with all its possible descendants) from the system. The resulting branching system
is called a branching killed Brownian motion with drift. Let Z(0,∞)

t denote the point
process formed by the positions of all the particles alive at time t in the branching killed
Brownian motion with drift, i.e.,

Z
(0,∞)
t :=

∑
u∈N(t)

1{mins≤t Xu(s)>0}δXu(t).

We will use (Ft : t ≥ 0) to denote the natural filtration of branching Brownian motion.
Assume that

∞∑
k=0

kpk = 2.

Kesten [18] proved that for any θ ∈ R, there exists a constant C = C(x, θ) > 0 such that

Ex

(
Z

(0,∞)
t ((0,∞))

)
∼


Ct−3/2e(1−

θ2

2 )t, θ > 0,

Ct−1/2et, θ = 0,

Cet, θ < 0.

Consequently, when θ ≥
√
2, the branching killed Brownian motion with drift will die

out with probability 1. It was proved in [18] that, when θ <
√
2 and

∑∞
k=1 k

2pk < ∞, the
branching killed Brownian motion with drift will survive with positive probability. In
[18], Kesten also stated, without proof, that under the assumption

∑∞
k=0 k

2pk < ∞, there
exists a random variable W (θ) such that

Px

(
W (θ) > 0

∣∣Z(0,∞)
t ((0,∞)) > 0, ∀t > 0

)
= 1 (1.1)

and that

(i) if θ ∈ [0,
√
2), then Px-a.s., simultaneously for all intervals ∆ ⊂ (0,∞) (finite or

infinite), it holds that

Z
(0,∞)
t (∆)

Ex

(
Z

(0,∞)
t (∆)

) t→∞−→ W (θ); (1.2)

(ii) if θ < 0, then Px-a.s.,

e−tZ
(0,∞)
t ((0,∞))

t→∞−→ W (θ).

In [22], Louidor and Saglietti proved that (1.1) and (1.2) hold for the case θ ∈ (0,
√
2).

The purpose of this paper is to extend and sharpen the main result of [22]: We weaken
the moment condition from

∑∞
k=1 k

2pk < ∞ to
∑∞

k=1 k log
1+λ kpk < ∞ for some λ > 0

and, for any a ≥ 0, give asymptotic expansions of arbitrary order for

Z
(0,∞)
t ((a,∞))

t−3/2e(1−
θ2

2 )t
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Asymptotic expansion for branching killed BM

under this weaker assumption. We emphasize here that we do not use the results of [22]
in this paper and that, as a consequence of Theorem 1.1 below, we give another proof of
(1.2) under the weaker condition. We also include the case θ = 0. It is natural to study
similar problems for the case θ < 0. We believe things might be different in this case
and we plan to tackle this in a future work.

Branching killed Brownian motions with drift have been studied in quite a few papers.
The case θ ≥

√
2 has been studied in [2, 3, 4, 5, 6, 13, 20, 21, 24] and the references

therein. Since the process will die out in finite time in the case θ ≥
√
2, the limiting

behavior in this case is quite different from the case θ <
√
2. In the case θ <

√
2, Harris

et. al. [14] proved the existence and the uniqueness of the traveling-wave solution for
one-sided F-KPP equation. Harris et. al. [14] also gave a strong law of large numbers for
the Lyapunov exponent of Z(0,∞)

t ((λt,∞)) and proved a strong law of large numbers and
a large deviation principle for the right-most position Rt. The weak convergence for the
extremal process was recently proved by Yang and Zhu [28].

There are also many related researches on asymptotic expansions for supercritical
branching random walks and branching Wiener processes. Kaplan and Asmussen [16, 17]
dealt with branching random walks, they proved that, under the assumption that the
step of the random walk has mean 0 and variance 1, for any b ∈ R, almost surely,

lim
n→∞

1

E(Zn(R))
Zn((−∞,

√
nb]) = W∞

∫ b

−∞

1√
2π

e−x2/2dx, (1.3)

and that, under the additional assumption that the step of the random walk has finite
3rd moment, for any a < b,

lim
n→∞

√
2πn

E(Zn(R))
Zn((a, b)) = (b− a)W∞, (1.4)

where W∞ is a martingale limit. Subsequently, quite a few papers studied asymptotic
behaviors of the type (1.3) and (1.4) for general branching random walks, for example,
see [7, 8, 9, 10, 26] and the references therein. To the best of our knowledge no one
has been able to establish the asymptotic expansions of Zn((−∞,

√
nb]) and Zn((a, b)) for

general branching random walks yet. See [10, Conjecture 2.7]. Asymptotic expansions
have been established in the special case of branching Wiener processes or branching
lattice random walks in [11, 12]. In the continuous-time setting, Kang [15] proved a
strong law of large numbers for branching Brownian motions.

1.2 Main results

We will assume that

∞∑
k=1

k(log k)1+λpk < ∞, (1.5)

for some λ > 0. Let Hk be the k-th order Hermite polynomial: H0(x) := 1 and for k ≥ 1,

Hk(x) :=

[k/2]∑
j=0

k!(−1)j

2jj!(k − 2j)!
xk−2j .

It is well known that, if {(Bt)t≥0,Π0} is a standard Brownian motion (throughout this
paper, we use Πx to denote both the law of a standard Brownian motion starting from
x and the corresponding expectation), then, for any k ≥ 1, {tk/2Hk(Bt/

√
t), σ(Bs : s ≤

t), Π0} is a martingale. Throughout this paper N = {0, 1, 2 · · · }. Now for θ ∈ [0,
√
2) and
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k ∈ N, we define

M
(2k+1,θ)
t

:= e−(1− θ2

2 )t
∑

u∈N(t)

1{mins≤t Xu(s)>0}e
θXu(t)t(2k+1)/2H2k+1

(
Xu(t)√

t

)
, t ≥ 0. (1.6)

We will prove later (see Proposition 3.1) that, for any x > 0, k ∈ N and θ ∈ [0,
√
2),

M
(2k+1,θ)
t is a martingale, and if (1.5) holds for some large λ, then M

(2k+1,θ)
t converges

to a limit M (2k+1,θ)
∞ Px-almost surely and in L1(Px).

Theorem 1.1. Assume the drift θ is in (0,
√
2). For any given m ∈ N, if (1.5) holds for

some λ > 6m+ 6, then for any x > 0, Px-almost surely, simultaneously for all intervals
A ⊂ (0,∞), as t → ∞,

Z
(0,∞)
t (A)

t−3/2e(1−
θ2

2 )t

= −
√

2

π

m∑
`=0

H2`+2(0)

t`

∑̀
k=0

M
(2k+1,θ)
∞

(2k + 1)!(2`− 2k + 1)!

∫
A

z2`−2k+1e−θzdz + o(t−m).

Note that, from Theorem 1.1, one can immediately get the asymptotic expansion of

Z
(0,∞)
t ((a, b))

t−3/2e(1−
θ2

2 )t

for any finite interval (a, b) ⊂ (0,∞). For the case θ = 0, the result is a little bit different.
For finite intervals, the normalization function is the same as in Theorem 1.1. For infinite
intervals, the normalization function is different.

Theorem 1.2. Assume that the drift θ is 0. For any given m ∈ N, if (1.5) holds for some
λ > 6m+ 6, then

(i) for any x > 0, Px-almost surely, simultaneously for all bounded intervals A ⊂ (0,∞),
as t → ∞,

Z
(0,∞)
t (A)

t−3/2et

= −
√

2

π

m∑
`=0

H2`+2(0)

t`

∑̀
k=0

M
(2k+1,0)
∞

(2k + 1)!(2`− 2k + 1)!

∫
A

z2`−2k+1dz + o(t−m);

(ii) for any x > 0, Px-almost surely, simultaneously for all A = (a,∞) and A = [a,∞)

with a ≥ 0, as t → ∞,

Z
(0,∞)
t (A)

t−1/2et
=

√
2

π

m∑
`=0

H2`(0)

t`

∑̀
k=0

M
(2k+1,0)
∞

(2k + 1)!(2`− 2k)!
a2`−2k + o(t−m).

Remark 1.3. Note that we only dealt with the case that the branching rate is 1 and the
mean number of offspring is 2 in the two theorems above. In the general case when the
branching rate is β > 0 and the mean number of offspring is µ > 1, one can use the same
argument to prove the following counterpart of Theorem 1.1: Let θ ∈ (0,

√
2β(µ− 1)).

For any given m ∈ N, if (1.5) holds for some λ > 6m+ 6, then for any x > 0, Px-almost
surely, simultaneously for all intervals A ⊂ (0,∞), as t → ∞,

Z
(0,∞)
t (A)

t−3/2e(β(µ−1)− θ2

2 )t

= −
√

2

π

m∑
`=0

H2`+2(0)

t`

∑̀
k=0

M
(2k+1,θ)
∞

(2k + 1)!(2`− 2k + 1)!

∫
A

z2`−2k+1e−θzdz + o(t−m),
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with M
(2k+1,θ)
∞ given by

M (2k+1,θ)
∞

:= lim
t→∞

e−(β(µ−1)− θ2

2 )t
∑

u∈N(t)

1{mins≤t Xu(s)>0}e
θXu(t)t(2k+1)/2H2k+1

(
Xu(t)√

t

)
. (1.7)

The counterpart of Theorem 1.2 in the general case is as follows: For any given
m ∈ N, if (1.5) holds for some λ > 6m+ 6, then

(i) for any x > 0, Px-almost surely, simultaneously for all bounded intervals A ⊂ (0,∞),
as t → ∞,

Z
(0,∞)
t (A)

t−3/2eβ(µ−1)t

= −
√

2

π

m∑
`=0

H2`+2(0)

t`

∑̀
k=0

M
(2k+1,0)
∞

(2k + 1)!(2`− 2k + 1)!

∫
A

z2`−2k+1dz + o(t−m);

(ii) for any x > 0, Px-almost surely, simultaneously for all A = (a,∞) and A = [a,∞)

with a ≥ 0, as t → ∞,

Z
(0,∞)
t (A)

t−1/2eβ(µ−1)t
=

√
2

π

m∑
`=0

H2`(0)

t`

∑̀
k=0

M
(2k+1,0)
∞

(2k + 1)!(2`− 2k)!
a2`−2k + o(t−m),

with M
(2k+1,0)
∞ given in (1.7).

Remark 1.4. Note that if
∑∞

k=1 k
1+εpk < ∞ for some ε > 0, then the conclusions of

Theorems 1.1 and 1.2 hold for all m ∈ N. Also, combining (1.2), Theorems 1.1 and 1.2,
we easily see that for any x > 0 and θ ∈ [0,

√
2), Px-almost surely,

W (θ) =
M

(1,θ)
∞

Ex(M
(1,θ)
∞ )

=
1

xeθx
M (1,θ)

∞ .

Our moment condition λ > 6m+ 6 is not optimal. It is an interesting question to find the
optimal moment condition. We do not explore this in the present paper.

Remark 1.5. M (1,θ) is a non-negative martingale. It was proved in [22] that, when
θ ∈ (0,

√
2), the limit M (1,θ)

∞ is almost surely strictly positive on the survival event. When

k ≥ 1, the martingales M
(2k+1,θ)
∞ are not non-negative. We did not try to determine

whether the limit M (2k+1,θ)
∞ is almost surely non-zero on the survival event.

Our strategy for proving these Theorems 1.1 and 1.2 is as follows. We will choose
appropriate κ > 1 depending on the order m of the expansion and define

rn := n
1
κ , n ∈ N.

We first study the asymptotic expansion along {rn : n ∈ N}, which is given by Proposition
3.4, and then control the behavior for t ∈ (rn, rn+1), see Lemma 3.6 below.

More precisely, in the proof of Lemma 3.2, for a particle u alive at time rn, we let
Gn,u be the event that, for all v < u with death time dv ∈ (

√
rn, rn), the number Ov of

offspring of v is no bigger than ec0
√
rn for some small c0 and then use Gn,u to define the

process Z(0,∞),G
rn in (3.16). For any interval A ⊂ (0,∞), we use the first moment method

to show that Z(0,∞)
rn (A) ≈ Z

(0,∞),G
rn (A) and then use the `-th moment method to prove that

Z
(0,∞),G
rn (A) ≈ Ex

(
Z

(0,∞),G
rn (A)

∣∣F√
rn

)
, here ` ∈ (1, (2 ∧ (2/θ2)) is chosen to ensure the

decay of the `-th moment. Lemma 3.3 is a generalization of Lemma 3.2. In Lemma 3.3 we
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show that one can find a Ω̂ with Px(Ω̂) = 1 such that Z(0,∞)
rn (A) ≈ Ex

(
Z

(0,∞)
rn (A)

∣∣F√
rn

)
for all ω ∈ Ω̂ and all intervals A ⊂ (0,∞). The key idea in this part is that for each n, we
compare the quantities with the corresponding quantities associated with partitions of
mesh size 1/[rm+ε

n ] for some ε > 0, and use these comparisons to prove a uniformly result.
Once Lemma 3.3 is proved, Proposition 3.4 follows directly by standard computation.

Although the focus of [17] was (1.3) and (1.4) for branching random walks, the
method and idea used in [17] were guidelines in the study of asymptotic expansion
of branching random walks (for example, see [9, 11]) and branching random walks in
random environment (for example, see [8, 10]). The technique of [17] was improved
and generalized in the literatures (see, for instance, [8, 9, 10, 11] and the references
therein). The main idea of the present paper is also inspired by [17], but we have to
make some modifications. Take one of the work, [8], as a comparison. In [8, beginning
of the proof of Lemma 5.1], Gao and Liu defined a quantity Xn,u containing both of the
jumping size and the population size, and truncated it appropriately. In our case, we
do not mix the population size and the spatial motion together, and we use a different
truncation. In (3.16), our choice for the truncation is to control the the offspring sizes
of those ancestors of particles alive at time rn with death time in (

√
rn, rn), which is an

effective way of separating the genealogy and the spatial motion. This truncation method
has been used to study the limit behaviors of the derivative martingale of branching
Brownian motions in [23].

To control the behaviors for t ∈ (rn, rn+1), we first give a lower bound of Z(0,∞)
t (A)

(see Lemma 3.5), then prove Lemma 3.6 by finding an upper bound of Z(0,∞)
t ((0,∞)).

The idea comes from Kang [15], but we need to make some modifications. Since the
number of the particles grows exponentially, we can not just choose the same rn = nδ for
some δ > 0 as in [15] to get the convergence rate of order rmn . We select particles alive at
time rn that do not split during the small time (rn, rn+1) and show that the fluctuations of
these particles are relative small. Then we can show that simultaneously for all intervals
J ⊂ (0,∞), Z(0,∞)

t (J) ≈ Z
(0,∞)
rn (J) for all t ∈ (rn, rn+1).

Once we have Proposition 3.4 and Lemma 3.6, the proofs of Theorems 1.1 and 1.2
are straight-forward.

2 Preliminaries

2.1 Spine decomposition

Recall that (Ft) is the natural filtration of our branching Brownian motion. Define

dPx

dPx

∣∣∣∣
Ft

:=

∑
u∈N(t) 1

et
, (2.1)

then, under Px, the branching Brownian motion has the following spine decomposi-
tion(see [19], or [25] for a more general case):

(i) there is an initial marked particle at x ∈ R which moves according to standard
Brownian motion with drift −θ;

(ii) the branching rate of this marked particle is 2;

(iii) when the marked particle dies at site y, it gives birth to L̂ children with Px(L̂ =

k) = kpk/2;

(iv) one of these children is uniformly selected and marked, and the marked child
evolves as its parent and the other children evolve with law Py, where Py denotes
the law of a branching Brownian motion starting at y, and all the children evolve
independently.
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We use ξt and Xξ(t) to denote the marked particle at time t and the position of this
marked particle respectively. We also use di to denote the i-th splitting time of the
spine and Oi to denote the number of children produced by the spine at time di. By [25,
Theorem 2.11], we can get that for u ∈ N(t),

Px

(
ξt = u

∣∣Ft

)
=

1∑
u∈N(t) 1

. (2.2)

Using (2.2), we get the following many-to-one formula:

Lemma 2.1. For any x ∈ R, t > 0 and u ∈ N(t), let Γ(u, t) be a non-negative Ft-
measurable random variable. Then

Ex

( ∑
u∈N(t)

Γ(u, t)
)
= etEx (Γ(ξt, t)) .

Proof. Combining (2.1) and (2.2), we get

Ex

( ∑
u∈N(t)

Γ(u, t)
)
= etEx

( ∑
u∈N(t)

Γ(u, t)∑
v∈N(t) 1

)
= etEx

( ∑
u∈N(t)

Γ(u, t)Px

(
ξt = u

∣∣Ft

))
= etEx

(
Ex

( ∑
u∈N(t)

1{ξt=u}Γ(u, t)
∣∣Ft

))
= etEx

(
Γ(ξt, t)

∑
u∈N(t)

1{ξt=u}

)
= etEx (Γ(ξt, t)) .

2.2 Some useful facts

We will use the notation f(x) . g(x),∀x ∈ E, to denote that there exists some constant
C independent of x such that f(x) ≤ Cg(x) for all x ∈ E. For any subset A of [0,∞), we
define supA := sup{y : y ∈ A}.
Lemma 2.2. (i) Let ` ∈ [1, 2]. Then for any finite family of independent centered random
variables {Xi : i = 1, . . . , n} with E|Xi|` < ∞ for all i = 1, . . . , n, it holds that

E
∣∣ n∑
i=1

Xi

∣∣` ≤ 2

n∑
i=1

E|Xi|`.

(ii) For any ` ∈ [1, 2] and any random variable X with E|X|` < ∞,

E |X − EX|` . E|X|` ≤ (EX2)`/2.

Proof. For (i), see [27, Theorem 2]. (ii) follows easily from Jensen’s inequality.

We will use Π−θ
x to denote both the law of a Brownian motion with drift −θ start-

ing from x and the corresponding expectation. Let φ(x) := 1√
2π

e−x2/2 and Φ(x) :=∫ x

−∞ φ(y)dy.

Lemma 2.3. (i) Let (Bt,Π
↑
x) be a 3-dimensional Bessel process with transition density

p↑t (x, y) = 1{y>0}
ye−(y−x)2/(2t)

x
√
2πt

(
1− e−2xy/t

)
= 1{y>0}

y

x
√
t

(
φ

(
y − x√

t

)
− φ

(
y + x√

t

))
.

Then for any θ ∈ [0,
√
2), we have

dΠ↑
x

dΠ−θ
x

∣∣∣∣
σ(Bs:s≤t)

=
Bte

θ(Bt−x)+ θ2

2 t

x
1{mins≤t Bs>0}.

(ii) For any t, x, y > 0,

p↑t (x, y) .
y2

t3/2
e−(x−y)2/(2t) ≤ y2

t3/2
.
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Proof. (ii) follows from the inequality 1− e−x ≤ x, x > 0. For (i), note that under Πx, both

Bt

x
1{mins≤t Bs>0} and e−θ(Bt−x)− θ2

2 t

are mean 1 non-negative martingales and that we have the following change-of-measure:

dΠ↑
x

dΠx

∣∣∣∣
σ(Bs:s≤t)

=
Bt

x
1{mins≤t Bs>0} and

dΠ−θ
x

dΠx

∣∣∣∣
σ(Bs:s≤t)

= e−θ(Bt−x)− θ2

2 t.

Therefore, (i) follows from

dΠ↑
x

dΠ−θ
x

∣∣∣∣
σ(Bs:s≤t)

=
dΠ↑

x

dΠx

∣∣∣∣
σ(Bs:s≤t)

×

(
dΠ−θ

x

dΠx

∣∣∣∣
σ(Bs:s≤t)

)−1

=
Bte

θ(Bt−x)+ θ2

2 t

x
1{mins≤t Bs>0}.

Lemma 2.4. (i) Let θ ∈ (0,
√
2). For any x, t > 0 and Borel set A ⊂ (0,∞), it holds that

Π−θ
x

(
min
s≤t

Bs > 0, Bt ∈ A

)
=

√
2

π
xeθxt−3/2e−

θ2

2 t

(∫
A

ye−θydy + εA(x, t)

)
, (2.3)

with εA(x, t) satisfying

|εA(x, t)| ≤ Cθ

(
1 ∧ (x+ 1)2

t

)
for some constant Cθ depending on θ only. In particular, for any fixed θ ∈ (0,

√
2),

Π−θ
x

(
min
s≤t

Bs > 0, Bt ∈ A
)
. xeθxt−3/2e−

θ2

2 t
(
1{supA=∞}+(supA)|A|1{supA<∞}

)
, (2.4)

where |A| represents the Lebesgue measure of A.
(ii) For any Borel set A ⊂ (0,∞) and x, t > 0, it holds that

Πx

(
min
s≤t

Bs > 0, Bt ∈ A
)
. xt−1/21{supA=∞} + xt−3/2|A|(supA)1{supA<∞}.

(iii) For any x, t > 0, θ ∈ [0,
√
2) and Borel set A ⊂ (0,∞), it holds that

Π−θ
x (Bt ∈ A) ≤ eθxe−

θ2

2 t.

Proof. (i) For (2.3), see [22, Lemma 3.1]. Now we prove (2.4). According to Lemma 2.3,
it holds that

Π−θ
x

(
min
s≤t

Bs > 0, Bt ∈ A
)
= xeθxe−

θ2

2 tΠ↑
x

(
1

Bt
e−θBt1{Bt∈A}

)
= xeθxe−

θ2

2 t

∫
A

1

y
e−θyp↑t (x, y)dy . xeθxe−

θ2

2 tt−3/2

∫
A

ye−θydy,

as desired.
(ii) When supA = ∞, by the reflection principle for Brownian motion, we have

Πx

(
min
s≤t

Bs > 0
)
= Π0(|Bt| ≤ x) = 2

∫ x

0

1√
2πt

e−y2/(2t)dy .
x√
t
.

When supA < ∞, by Lemma 2.3,

Πx

(
min
s≤t

Bs > 0, Bt ∈ A
)
= xΠ↑

x

(
1A(Bt)

Bt

)
= x

∫
A

1

y
p↑t (x, y)dy .

x

t3/2

∫
A

ydy .
x|A| supA

t3/2
.

(iii) By Girsanov’s theorem,

Π−θ
x (Bt ∈ A) ≤ Π−θ

x (Bt > 0) = Πx

(
e−θ(Bt−x)− θ2

2 t1{Bt>0}

)
≤ eθxe−

θ2

2 t.
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Asymptotic expansion for branching killed BM

Lemma 2.5. (i) For any k ≥ 1 and x ∈ R,

|Hk(x)| ≤ 2
√
k!ex

2/4.

Consequently, it holds that

sup
y∈R

|φ(y)Hk(y)| ≤
√

2

π

√
k! sup

y∈R
e−y2/4 =

√
2

π

√
k!.

(ii) For any k ∈ N, there exists a constant C(k) such that for all x ∈ R,

|H2k+1(x)| ≤ C(k)|x|
(
|x|2k + 1

)
.

Proof. For (i), see [11, (4.1)]; (ii) follows from the definition of H2k+1(x).

Lemma 2.6. For (ρ, b, x) ∈ (−1, 1)×R×R, uniformly on compact subsets of (−1, 1)×R×R,
it holds that

Φ

(
b− ρx√
1− ρ2

)
= Φ(b)− φ(b)

∞∑
k=1

ρk

k!
Hk−1(b)Hk(x).

Proof. See [11, Lemma 4.2.].

Recall that rn = n1/κ. Applying Lemma 2.6 with ρ = r
−1/4
n , b = r

−1/2
n z and x = r

−1/4
n y,

we get that for any z, y ∈ R,

Φ

(
z − y√
rn −√

rn

)
= Φ

(
z

√
rn

)
− φ

(
z

√
rn

) ∞∑
k=1

1

k!

1

r
k/2
n

Hk−1

(
z

√
rn

)
rk/4n Hk

(
y

r
1/4
n

)
.

Noting that, for any k ∈ N, H2k is an even function and H2k+1 is an odd function, we get
that

Φ

(
z + y√
rn −√

rn

)
− Φ

(
z − y√
rn −√

rn

)

= 2φ

(
z

√
rn

) ∞∑
k=0

1

(2k + 1)!

1

r
(2k+1)/2
n

H2k

(
z

√
rn

)
r(2k+1)/4
n H2k+1

(
y

r
1/4
n

)
. (2.5)

Lemma 2.7. For any given m ∈ N and κ > 1, let K > 0 be a fixed constant and J be an
integer such that J > 2m+ Kκ−1

2 . Then for any y, z ∈ R, it holds that

Φ

(
z + y√
rn −√

rn

)
− Φ

(
z − y√
rn −√

rn

)

=2φ

(
z

√
rn

) J∑
k=0

1

(2k + 1)!

1

r
(2k+1)/2
n

H2k

(
z

√
rn

)
r(2k+1)/4
n H2k+1

(
y

r
1/4
n

)
+εm,y,z,n,κ (2.6)

with

r(2m+1)/2
n sup

{
|εm,y,z,n,κ| : z ∈ R, |y| ≤

√
K
√
rn log n

}
n→∞−→ 0.

Proof. By Lemma 2.5 (i), for all k ≥ 1, z ∈ R and |y| ≤
√

K
√
rn log n,

r
(2m+1)/2
n

(2k + 1)!

1

r
(2k+1)/2
n

∣∣∣∣φ( z
√
rn

)
H2k

(
z

√
rn

)∣∣∣∣ · ∣∣∣∣r(2k+1)/4
n H2k+1

(
y

r
1/4
n

)∣∣∣∣
≤ 4r

(2m+1)/2
n

r
(2k+1)/4
n

1√
2π

ey
2/(4

√
rn) ≤ 4√

2π

1

n(2k−1−4m)/(4κ)
nK/4.
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Asymptotic expansion for branching killed BM

Combining this with (2.5), we get that (2.6) holds with

r(2m+1)/2
n sup

z∈R,|y|≤
√

K
√
rn logn

|εm,y,z,n|

≤ 8√
2π

∞∑
k=J+1

1

n(2k−1−4m)/(4κ)
nK/4 .

1

n(2(J+1)−1−4m)/(4κ)
nK/4,

which tends to 0 is since J > 2m+ Kκ−1
2 .

Taking derivative with respect to x in Lemma 2.6, and using the facts that

dk

dxk
Φ(x) = (−1)k−1Hk−1(x)φ(x), H ′

k(x) = kHk−1(x), k ≥ 1, (2.7)

we get that

1√
1− ρ2

φ

(
b− ρx√
1− ρ2

)
= φ(b) + φ(b)

∞∑
k=1

ρk

k!
Hk(b)Hk(x). (2.8)

Taking ρ = r
−1/4
n , b = r

−1/2
n z and x = r

−1/4
n y in (2.8), we get that for any z, y ∈ R,

√
rn√

rn −√
rn

φ

(
z − y√
rn −√

rn

)

= φ

(
z

√
rn

)(
1 +

∞∑
k=1

1

k!

1

r
k/2
n

Hk

(
z

√
rn

)
rk/4n Hk

(
y

r
1/4
n

))
. (2.9)

Noting that, for any k ∈ N, H2k is an even function and H2k+1 is an odd function, we
deduce from (2.9) that

√
rn√

rn −√
rn

(
φ

(
z − y√
rn −√

rn

)
− φ

(
z + y√
rn −√

rn

))

= 2φ

(
z

√
rn

) ∞∑
k=0

1

(2k + 1)!

1

r
(2k+1)/2
n

H2k+1

(
z

√
rn

)
r(2k+1)/4
n H2k+1

(
y

r
1/4
n

)
.

Using an argument similar to that leading to Lemma 2.7, we also have the following
lemma. We omit the proof.

Lemma 2.8. For any given m ∈ N and κ > 1, let K > 0 be a fixed constant and J be an
integer such that J > 2m+ Kκ+1

2 . Then for any y, z ∈ R, it holds that

√
rn√

rn −√
rn

(
φ

(
z − y√
rn −√

rn

)
− φ

(
z + y√
rn −√

rn

))

= 2φ

(
z

√
rn

) J∑
k=0

1

(2k + 1)!

1

r
(2k+1)/2
n

H2k+1

(
z

√
rn

)
r(2k+1)/4
n H2k+1

(
y

r
1/4
n

)
+ εm,y,z,n,κ

with

rm+1
n sup

{
|εm,y,z,n,κ| : z ∈ R, |y| ≤

√
K
√
rn log n

}
n→∞−→ 0.
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3 Proofs of the main results

3.1 Convergence rate for the martingales

Proposition 3.1. Suppose x > 0 and θ ∈ [0,
√
2). (i) For any k ∈ N, {M (2k+1,θ)

t , t ≥ 0; Px}
is a martingale. (ii) If (1.5) holds for some λ > k, then M

(2k+1,θ)
t converges to a limit

M
(2k+1,θ)
∞ Px-a.s. and in L1(Px). Moreover, for any η ∈ (0, λ− k), as t → ∞,

M
(2k+1,θ)
t −M (2k+1,θ)

∞ = o(t−(λ−k)+η), Px-a.s.

Proof. (i) We will use v < u to denote that v is an ancestor of u and v ≤ u to denote v = u

or v < u. By the Markov property and Lemma 2.1, for any t, s > 0,

Ex

(
M

(2k+1,θ)
s+t

∣∣Ft

)
= e−(1− θ2

2 )(t+s)
∑

v∈N(t)

1{minr≤t Xv(r)>0}(t+ s)(2k+1)/2

× EXv(t)

 ∑
u∈N(t+s):v≤u

1{minr≤s Xv(t+r)>0}e
θXv(t+s)H2k+1

(
Xu(t+ s)√

t+ s

) ∣∣∣Ft


= e−(1− θ2

2 )(t+s)
∑

v∈N(t)

1{minr≤t Xv(r)>0}

× esEXv(t)

(
1{minr≤s Xξ(r)>0}e

θXξ(s)(t+ s)(2k+1)/2H2k+1

(
Xξ(s)√
t+ s

))
=: e−(1− θ2

2 )(t+s)
∑

v∈N(t)

1{minr≤t Xv(r)>0}F (s, t,Xv(t)). (3.1)

Note that Xξ(s) under Px is a standard Brownian motion with drift −θ. It follows from
Lemma 2.3 (i) that

F (s, t,Xv(t)) = e(1−
θ2

2 )sXv(t)e
θXv(t)Π↑

Xv(t)

(
(t+ s)(2k+1)/2

Bs
H2k+1

(
Bs√
t+ s

))
= e(1−

θ2

2 )sXv(t)e
θXv(t)

∫ ∞

0

(t+ s)(2k+1)/2

y
H2k+1

(
y√
t+ s

)
× y

Xv(t)
√
s

(
φ

(
y −Xv(t)√

s

)
− φ

(
y +Xv(t)√

s

))
dy

= e(1−
θ2

2 )seθXv(t)

∫ ∞

0

(t+ s)(2k+1)/2H2k+1

(
y√
t+ s

) φ
(

y−Xv(t)√
s

)
− φ

(
y+Xv(t)√

s

)
√
s

dy.

Using the fact that H2k+1(·) is an odd function and that φ(·) is an even function, we have

F (s, t,Xv(t)) = e(1−
θ2

2 )seθXv(t)

∫ ∞

−∞
(t+ s)(2k+1)/2H2k+1

(
y√
t+ s

) φ
(

y−Xv(t)√
s

)
√
s

dy

= e(1−
θ2

2 )seθXv(t)

∫ ∞

−∞
(t+ s)(2k+1)/2H2k+1 (z)

√
t+ s√
s

φ

(√
t+ sz −Xv(t)√

s

)
dz,

where for the last equality we used the change of variables z = y/
√
t+ s. Taking

ρ =
√
t/(s+ t), b = z, x = Xv(t)/

√
t in (2.8), we see that

√
t+ s√
s

φ

(√
t+ sz −Xv(t)√

s

)
= φ(z) + φ(z)

∞∑
`=1

t`/2

`!

1

(t+ s)`/2
H`(z)H`

(
Xv(t)√

t

)
.

EJP 30 (2025), paper 28.
Page 11/40

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1289
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Asymptotic expansion for branching killed BM

Combining these with Lemma 2.5(i) and the fact φ(z)ez
2/4 . e−z2/4, we can easily get

that for any s, t > 0, y ∈ R, the series

H2k+1 (z)φ(z)
∞∑
`=1

t`/2

`!

1

(t+ s)`/2
H`(z)H`

(
y√
t

)

is uniformly convergent in z ∈ R. Now applying the property
∫∞
−∞ Hm(z)Hn(z)φ(z)dz =

δm,nn!, we get

F (s, t,Xv(t))

= e(1−
θ2

2 )seθXv(t)

∫ ∞

−∞
(t+ s)(2k+1)/2 t

(2k+1)/2

(2k + 1)!

H2k+1 (z)φ(z)

(t+ s)(2k+1)/2
H2k+1(z)H2k+1

(
Xv(t)√

t

)
dz

= e(1−
θ2

2 )seθXv(t)t(2k+1)/2H2k+1

(
Xv(t)√

t

)
.

Plugging this into (3.1), we get (i).

(ii) Suppose (1.5) holds for some λ > k. If the first assertion of (ii) holds along t =

n ∈ N, then it is valid along all t since for t ∈ (n, n+1), M (2k+1,θ)
t = Ex

(
M

(2k+1,θ)
n+1

∣∣Ft

)
=

Ex

(
M

(2k+1,θ)
∞

∣∣Ft

)
. In the following we use two steps to prove the assertion of (ii) holds

for the case t = n ∈ N.

Step 1: In this step, we will define a truncated process M
(2k+1,θ,B)
n+1 and give first

moment estimate for M (2k+1,θ)
n+1 −M

(2k+1,θ,B)
n+1 . Let dv, Ov denote the death time and the

number of offspring of v respectively. For u ∈ N(n+ 1), let Bn,u be the event that, for all
v < u with dv ∈ (n, n+ 1), it holds that Ov ≤ ec0n, where c0 > 0 is a small constant to be
determined later. Define

M
(2k+1,θ,B)
n+1 := e−(1− θ2

2 )(n+1)

×
∑

u∈N(n+1)

1{mins≤n+1 Xu(s)>0}e
θXu(n+1)(n+ 1)(2k+1)/2H2k+1

(
Xu(n+ 1)√

n+ 1

)
1Bn,u

.

By the branching property, it holds that

∣∣∣M (2k+1,θ)
n+1 −M

(2k+1,θ,B)
n+1

∣∣∣ ≤ e−(1− θ2

2 )(n+1)

×
∑

u∈N(n+1)

1{mins≤n+1 Xu(s)>0}e
θXu(n+1)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xu(n+ 1)√

n+ 1

)∣∣∣∣ 1Bc
n,u

= e−(1− θ2

2 )(n+1)
∑

v∈N(n)

1{mins≤n Xv(s)>0}

×
∑

u∈N(n+1):v≤u

1{mins≤1 Xu(n+s)>0}e
θXu(n+1)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xu(n+ 1)√

n+ 1

)∣∣∣∣ 1Bc
n,u

.
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Using the Markov property first and then Lemma 2.5(ii), we get that

Ex

(∣∣∣M (2k+1,θ)
n+1 −M

(2k+1,θ,B)
n+1

∣∣∣ ∣∣∣Fn

)
≤ e−(1− θ2

2 )(n+1)
∑

v∈N(n)

1{mins≤n Xv(s)>0}

× EXv(n)

 ∑
u∈N(1)

1{mins≤1 Xu(s)>0}e
θXu(1)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xu(1)√
n+ 1

)∣∣∣∣ 1Dc
n,u


. e−(1− θ2

2 )(n+1)
∑

v∈N(n)

1{mins≤n Xv(s)>0}

× EXv(n)

 ∑
u∈N(1)

1{mins≤1 Xu(s)>0}Xu(1)e
θXu(1)

(
(Xu(1))

2k + (n+ 1)k
)
1Dc

n,u

 ,

where for u ∈ N(1), Dn,u denotes the event that, for all w < u with dw < 1, it holds that
Ow ≤ ec0n. Recall that di is the i-th splitting time of the spine and Oi is the number of
children produced by the spine at time di. Define Dn,ξ1 to be the event that, for all i with
di < 1, it holds that Oi ≤ ec0n. By Lemma 2.1,

Ex

(∣∣∣M (2k+1,θ)
n+1 −M

(2k+1,θ,B)
n+1

∣∣∣ ∣∣∣Fn

)
. e−(1− θ2

2 )(n+1)
∑

v∈N(n)

1{mins≤n Xv(s)>0}

× eEXv(n)

(
1{mins≤1 Xξ(s)>0}Xξ(1)e

θXξ(1)
(
Xξ(1)

2k + (n+ 1)k
)
1Dc

n,ξ1

)
=: e1−(1− θ2

2 )(n+1)
∑

v∈N(n)

1{mins≤n Xv(s)>0}R(Xv(n)). (3.2)

Conditioned on the motion Xξ, {di : i ≥ 1} are the atoms of a Poisson poin process

with rate 2 and {Oi : i ∈ N} are iid copies of L̂ with law Px(L̂ = `) = `p`/2 which are
independent of {di : i ∈ N}. Therefore, Dn,ξ1 is independent of Xξ(t). Together with
Lemma 2.3 (i), we get that

R(Xv(n)) = EXv(n)

(
1{mins≤1 Xξ(s)>0}Xξ(1)e

θXξ(1)
(
Xξ(1)

2k + (n+ 1)k
))

EXv(n)

(
1Dc

n,ξ1

)
≤ e−

θ2

2 Xv(n)e
θXv(n)Π↑

Xv(n)

(
B2k

1 + (n+ 1)k
)
EXv(n)

 ∑
i:di≤1

1{Oi>ec0n}


= 2e−

θ2

2 Xv(n)e
θXv(n)Π↑

Xv(n)

(
B2k

1 + (n+ 1)k
)
Px(L̂ > ec0n). (3.3)

Noticing that (Bt,Π
↑
x) is a 3-dimensional Bessel process, we easily see that

Π↑
Xv(n)

(
B2k

1 + (n+ 1)k
)
≤ Π↑

0

(
(B1 + y)2k + (n+ 1)k

) ∣∣
y=Xv(n)

. (Xv(n))
2k + nk. (3.4)

Noting that (1.5) implies Ex(log
1+λ
+ L̂) < ∞, using (3.3) and (3.4), we obtain that

R(Xv(n)) .
1

n1+λ
e−

θ2

2 Xv(n)e
θXv(n)

(
(Xv(n))

2k + nk
)
.

Plugging this inequality into (3.2), we conclude that

Ex

(∣∣∣M (2k+1,θ)
n+1 −M

(2k+1,θ,B)
n+1

∣∣∣ ∣∣∣Fn

)
.

e−(1− θ2

2 )n

n1+λ

∑
v∈N(n)

1{mins≤n Xv(s)>0}Xv(n)e
θXv(n)

(
(Xv(n))

2k + nk
)
.
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Taking expectation with respect to Px, applying Lemma 2.1 first and then Lemma 2.3 (i),
we get that

Ex

(∣∣∣M (2k+1,θ)
n+1 −M

(2k+1,θ,B)
n+1

∣∣∣)
.

e−(1− θ2

2 )n

n1+λ
Ex

( ∑
v∈N(n)

1{mins≤n Xv(s)>0}Xv(n)e
θXv(n)

(
(Xv(n))

2k + nk
) )

=
e

θ2

2 n

n1+λ
Ex

(
1{mins≤n Xξ(s)>0}e

θXξ(n)Xξ(n)
(
(Xξ(n))

2k + nk
))

=
xeθx

n1+λ
Π↑

x

(
(Bn)

2k + nk
)
≤ xeθx

n1+λ
Π↑

0

(
(Bn + x)2k + nk

)
.

1

n1+λ
Π↑

0

(
(Bn)

2k + nk
)
=

nk

n1+λ
Π↑

0

(
(B1)

2k + 1
)
, (3.5)

where in the last equality, we used the fact that (Bt,Π
↑
0)

d
= (

√
tB1,Π

↑
0).

Step 2: In this step, we will give an upper bound for the `-th moment of M (2k+1,θ,B)
n+1 −

Ex

(
M

(2k+1,θ,B)
n+1

∣∣Fn

)
for appropriate ` ∈ (1, 2). Combining this with Step 1 will yield the

first result of (ii). For v ∈ N(n), set

Jn,v :=
∑

u∈N(n+1):v≤u

1{mins≤1 Xu(n+s)>0}e
θXu(n+1)(n+1)(2k+1)/2H2k+1

(
Xu(n+ 1)√

n+ 1

)
1Bn,u

.

By the branching property, {Jn,v : v ∈ N(n)} are independent conditioned on Fn. Thus,

for any fixed 1 < ` < min{2/θ2, 2} with (`− 1)2θ2/2 < (`− 1)(1− θ2

2 ), by Lemma 2.2,

Ex

(∣∣∣M (2k+1,θ,B)
n+1 − Ex

(
M

(2k+1,θ,B)
n+1

∣∣Fn

)∣∣∣` ∣∣Fn

)

= e−`(1− θ2

2 )(n+1)Ex


∣∣∣∣∣∣
∑

v∈N(n)

1{mins≤n Xv(s)>0}
(
Jn,v − Ex

(
Jn,v

∣∣Fn

))∣∣∣∣∣∣
` ∣∣Fn


≤ 2e−`(1− θ2

2 )(n+1)
∑

v∈N(n)

1{Xv(n)>0}Ex

(∣∣Jn,v − Ex

(
Jn,v

∣∣Fn

)∣∣` ∣∣Fn

)
. e−`(1− θ2

2 )(n+1)
∑

v∈N(n)

1{Xv(n)>0}
(
Ex

(
(Jn,v)

2
∣∣Fn

))`/2
. (3.6)

Define

J∗
n :=

∑
u∈N(1)

1{mins≤1 Xu(s)>0}e
θXu(1)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xu(1)√
n+ 1

)∣∣∣∣ 1Dn,u
.

By the Markov property and Lemma 2.1,

Ex

(
(Jn,v)

2
∣∣Fn

)
≤ EXv(n)

(
(J∗

n)
2
)

= EXv(n)

 ∑
u∈N(1)

1{mins≤1 Xu(s)>0}e
θXu(1)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xu(1)√
n+ 1

)∣∣∣∣ 1Dn,uJ
∗
n


= eEXv(n)

(
1{mins≤1 Xξ(s)>0}e

θXξ(1)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xξ(1)√
n+ 1

)∣∣∣∣ 1Dn,ξ1
J∗
n

)
. (3.7)
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Conditioned on {Xξ, di, Oi : i ≥ 1}, by the Markov property, on the event Dn,ξ1 , we have

EXv(n)

(
J∗
n

∣∣Xξ, di, Oi : i ≥ 1
)

=
∑

i:di≤1

1{mins≤di
Xξ(s)>0}(Oi − 1)EXξ(di)

( ∑
u∈N(z)

1{mins≤z Xu(s)>0}

× eθXu(z)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xu(z)√
n+ 1

)∣∣∣∣ 1Dn,u

)∣∣
z=1−di

≤
∑

i:di≤1

1{mins≤di
Xξ(s)>0}(Oi − 1)

× EXξ(di)

 ∑
u∈N(z)

1{mins≤z Xu(s)>0}e
θXu(z)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xu(z)√
n+ 1

)∣∣∣∣
 ∣∣

z=1−di

≤ ec0n
∑

i:di≤1

1{mins≤di
Xξ(s)>0}e

1−di

×EXξ(di)

(
1{mins≤z Xξ(s)>0}e

θXξ(z)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xξ(z)√
n+ 1

)∣∣∣∣) ∣∣z=1−di

=: ec0n
∑

i:di≤1

1{mins≤di
Xξ(s)>0}e

1−diFn(Xξ(di), 1− di), (3.8)

where in the last inequality we used the fact that Oi − 1 ≤ ec0n on Dn,ξ1 and Lemma 2.1.
Using Lemma 2.5(ii) in the first inequality, Lemma 2.3 (i) in the first equality and an
argument similar to that leading to (3.4) in the second inequality, we get

Fn(Xξ(di), 1− di) . EXξ(di)

(
1{mins≤z Xξ(s)>0}e

θXξ(z)Xξ(z)
(
(Xξ(z))

2k + (n+ 1)k
)) ∣∣

z=1−di

= Xξ(di)e
θXξ(di)e−

θ2

2 (1−di)Π↑
Xξ(di)

(
(Bz)

2k + (n+ 1)k
) ∣∣

z=1−di

. Xξ(di)e
θXξ(di)

(
(Xξ(di))

2k + nk
)

sup
z∈(0,1)

Π↑
0((Bz)

2k + 1)

. Xξ(di)e
θXξ(di)

(
(Xξ(di))

2k + nk
)
. (3.9)

Combining (3.8) and (3.9), we obtain that

EXv(n)

(
J∗
n

∣∣Xξ, di, Oi : i ≥ 1
)

. ec0n
∑

i:di≤1

1{mins≤di
Xξ(s)>0}e

1−diXξ(di)e
θXξ(di)

(
(Xξ(di))

2k + nk
)

. ec0n
∑

i:di≤1

1{mins≤di
Xξ(s)>0}Xξ(di)e

θXξ(di)
(
(Xξ(di))

2k + nk
)
. (3.10)

Plugging (3.10) into (3.7),

Ex

(
(Jn,v)

2
∣∣Fn

)
. ec0nEXv(n)

(
1{mins≤1 Xξ(s)>0}e

θXξ(1)(n+ 1)(2k+1)/2

∣∣∣∣H2k+1

(
Xξ(1)√
n+ 1

)∣∣∣∣
×
∫ 1

0

1{mins≤r Xξ(s)>0}Xξ(r)e
θXξ(r)

(
(Xξ(r))

2k + nk
)
dr

)
. ec0nEXv(n)

(
1{mins≤1 Xξ(s)>0}e

θXξ(1)Xξ(1)
(
(Xξ(1))

2k + (n+ 1)k
)

×
∫ 1

0

1{mins≤r Xξ(s)>0}Xξ(r)e
θXξ(r)

(
(Xξ(r))

2k + nk
)
dr

)
, (3.11)
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where the last inequality follows by Lemma 2.5(ii). Using Lemma 2.3, we can continue
the estimate (3.11) and get

Ex

(
(Jn,v)

2
∣∣Fn

)
. Xv(n)e

θXv(n)ec0nΠ↑
Xv(n)

((
(B1)

2k + (n+ 1)k
) ∫ 1

0

Bre
θBr

(
(Br)

2k + nk
)
dr

)
≤ Xv(n)e

2θXv(n)ec0nΠ↑
0

((
(B1 + y)2k + (n+ 1)k

)
×
∫ 1

0

(Br + y)eθBr
(
(Br + y)2k + nk

)
dr

)∣∣
y=Xv(n)

. ec0n(Xv(n) + 1)2e2θXv(n)
(
(Xv(n))

2k + nk
)2

. (3.12)

Combining (3.6) and (3.12), we have

Ex

(∣∣∣M (2k+1,θ,B)
n+1 − Ex

(
M

(2k+1,θ,B)
n+1

∣∣Fn

)∣∣∣` ∣∣Fn

)
. e−`(1− θ2

2 )(n+1)ec0`n/2
∑

v∈N(n)

1{Xv(n)>0}(Xv(n) + 1)`e`θXv(n)
(
(Xv(n))

2k + nk
)`

≤ e−`(1− θ2

2 )nec0`n/2
∑

v∈N(n)

(|Xv(n)|+ 1)`e`θXv(n)
(
(Xv(n))

2k + nk
)`

.

Taking expectation with respect to Px and applying Lemma 2.1, we conclude that

Ex

(∣∣∣M (2k+1,θ,B)
n+1 − Ex

(
M

(2k+1,θ,B)
n+1

∣∣Fn

)∣∣∣`)
. e−`(1− θ2

2 )nec0`n/2enEx

(
(|Xξ(n)|+ 1)`e`θXξ(n)

(
(Xξ(n))

2k + nk
)`)

= e−`(1− θ2

2 )nec0`n/2enΠ−θ
x

(
(|Bn|+ 1)`e`θBn

(
(Bn)

2k + nk
)`)

= eθxe−(`−1)(1− θ2

2 )nec0`n/2Πx

(
(|Bn|+ 1)`e(`−1)θBn

(
(Bn)

2k + nk
)`)

= eθ`xe−(`−1)(1− θ2

2 )nec0`n/2e
(`−1)2θ2

2 nΠ(`−1)θ
x

(
(|Bn|+ 1)`

(
(Bn)

2k + nk
)`)

. e−(`−1)(1− θ2

2 )nec0`n/2e
(`−1)2θ2

2 nn2k`+` =: n2k`+`e−c1`n, (3.13)

where in the second and third equalities we used the change-of-measure dΠη
x

dΠx

∣∣
σ(Bs:s≤t)

=

eη(Bt−x)− η2

2 t for η = −θ and η = (`− 1)θ respectively. Let c0 > 0 be sufficiently small so

that c0`/2 < (`− 1)(1− θ2

2 )− (`− 1)2θ2/2 with `θ2/2 < 1, which implies that c1 > 0. Thus,
using the inequality:

E (|X − E(X|F)|) ≤ E (|X − Y |) + E (|Y − E(Y |F)|) + E
(∣∣E (X − Y

∣∣F)∣∣)
≤ 2E (|X − Y |) + E

(
|Y − E(Y |F)|`

)1/`
, (3.14)

(3.5) and (3.13), we get

∞∑
n=1

Ex

(∣∣∣M (2k+1,θ)
n+1 −M (2k+1,θ)

n

∣∣∣)
≤ 2

∞∑
n=1

Ex

(∣∣∣M (2k+1,θ)
n+1 −M

(2k+1,θ,B)
n+1

∣∣∣)+ ∞∑
n=1

Ex

(∣∣∣M (2k+1,θ,B)
n+1 − Ex

(
M

(2k+1,θ,B)
n+1

∣∣Fn

)∣∣∣`)1/`

.
∞∑

n=1

nk

n1+λ
+

∞∑
n=1

n2k+1e−c1n,
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which is finite since λ > k. Therefore, M (2k+1,θ)
n converges to a limit M (2k+1,θ)

∞ Px-a.s.
and in L1(Px).

Step 3: In this step, we prove the second assertion of (ii). For any η ∈ (0, λ− k), by
(3.5) and (3.13),

∞∑
n=1

nλ−k−ηEx

(∣∣∣M (2k+1,θ)
n+1 −M (2k+1,θ)

n

∣∣∣) .
∞∑

n=1

nλ−k−η nk

n1+λ
+

∞∑
n=1

nλ−k−ηn2k+1e−c1n < ∞.

Thus, nλ−k−η
(
M

(2k+1,θ)
n −M

(2k+1,θ)
∞

)
n→∞−→ 0,Px-a.s. (see for example [1, Lemma 2]).

For s ∈ [n, n+ 1], by Doob’s inequality, for any ε > 0,

∞∑
n=1

Px

(
nλ−k−η sup

n≤s≤n+1

∣∣∣M (2k+1,θ)
s −M (2k+1,θ)

n

∣∣∣ > ε

)

≤ 1

ε

∞∑
n=1

nλ−k−ηEx

(∣∣∣M (2k+1,θ)
n+1 −M (2k+1,θ)

n

∣∣∣) < ∞,

which implies that nλ−k−η supn≤s≤n+1

∣∣∣M (2k+1,θ)
s −M

(2k+1,θ)
n

∣∣∣ n→∞−→ 0,Px-a.s. Therefore,

we have Px-almost surely,

sup
n≤s≤n+1

sλ−k−η
∣∣∣M (2k+1,θ)

s −M (2k+1,θ)
∞

∣∣∣ ≤ (n+ 1)λ−k−η sup
n≤s≤n+1

∣∣∣M (2k+1,θ)
s −M (2k+1,θ)

n

∣∣∣
+ (n+ 1)λ−k−η

∣∣∣M (2k+1,θ)
n −M (2k+1,θ)

∞

∣∣∣ n→∞−→ 0,

which completes the proof of (ii).

3.2 Asymptotic expansions along discrete time

Lemma 3.2. Assume x > 0 and θ ∈ [0,
√
2). Let {An} be a family of Borel subsets of

(0,∞) such that

either sup
n

supAn < ∞ or inf
n

supAn = ∞.

For any given m ∈ N and κ > 1, if (1.5) holds for some λ > 2m+ 2κ+ 1, then

lim
n→∞

rmn

Z
(0,∞)
rn (An)− Ex

(
Z

(0,∞)
rn (An)

∣∣∣F√
rn

)
r−bθ
n e(1−

θ2

2 )rn
= 0, Px-a.s. (3.15)

where

bθ :=

{
3/2, θ = 0 and supn supAn < ∞ or θ ∈ (0,

√
2);

1/2, θ = 0 and infn supAn = ∞.

In particular, for any Borel set A ⊂ (0,∞), as n → ∞,

rmn

Z
(0,∞)
rn (A)− Ex

(
Z

(0,∞)
rn (A)

∣∣∣F√
rn

)
r−bθ
n e(1−

θ2

2 )rn
→ 0, Px-a.s.

Proof. Suppose m ∈ N, κ > 1 and that (1.5) holds for some λ > 2m+ 2κ+ 1. We divide
the proof into three steps. In Step 1, we define a truncated process Z

(0,∞),G
rn (An) and

give a first-moment estimate for Z
(0,∞)
rn (An) − Z

(0,∞),G
rn (An), see (3.23) below. In Step

2, we bound the `-th moment of Z(0,∞),G
rn (An)− Ex

(
Z

(0,∞),G
rn (An)

∣∣F√
rn

)
for appropriate
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` ∈ (1, 2), see (3.29) below; In Step 3, we combine the results obtained in Step 1 and
Step 2 to get the assertion of the proposition.

Step 1: Recall that v < u and v ≤ u mean that v is an ancestor of u and that v = u

or v < u respectively. For u ∈ N(rn), define Gn,u to be the event that, for all v < u with
death time dv ∈ (

√
rn, rn), it holds that Ov ≤ ec0

√
rn , where c0 > 0 is a small constant to

be determined later. Define

Z(0,∞),G
rn (An) :=

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1An
(Xu(rn))1Gn,u

. (3.16)

By the branching property, it holds that

Z(0,∞),G
rn (An)

=
∑

v∈N(
√
rn)

1{mins≤√
rn Xv(s)>0

} ∑
u∈N(rn):v≤u

1{min√
rn<s≤rn Xu(s)>0

}1An
(Xu(rn))1Gn,u

.

(3.17)

Therefore, by the Markov property,

rm+bθ
n

e(1−
θ2

2 )rn
Ex

(
Z(0,∞)
rn (An)− Z(0,∞),G

rn (An)
∣∣F√

rn

)
=

rm+bθ
n

e(1−
θ2

2 )rn

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0

}

× EXv(
√
rn)

 ∑
u∈N(rn−

√
rn)

1{mins≤rn−√
rn Xu(s)>0

}1An
(Xu(rn −

√
rn)) 1Dc

n,u


=:

rm+bθ
n

e(1−
θ2

2 )rn

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0

}TAn
(Xv(

√
rn), rn −

√
rn), (3.18)

where for u ∈ N(rn−
√
rn), Dn,u denotes the event that, for all w < u with dw < rn−

√
rn,

it holds that Ow ≤ ec0
√
rn . Recall that di is the i-th splitting time of the spine and Oi is

the number of children produced by the spine at time di. Define Dn,ξrn−√
rn

to be the

event that, for all i with di < rn −√
rn, it holds that Oi ≤ ec0

√
rn . By Lemma 2.1, we get

that

TAn
(Xv(

√
rn), rn −

√
rn)

= ern−
√
rnEXv(

√
rn)

(
1{mins≤rn−√

rn Xξ(s)>0
}1An(Xξ(rn −

√
rn))1Dc

n,ξrn−√
rn

)
. (3.19)

Note that given Xξ, {di : i ≥ 1} are the atoms for a Poisson point process with rate 2,

{Oi : i ≥ 1} are iid with common law L̂ given by Px(L̂ = k) = kpk/2, and that {di : i ≥ 1}
and {Oi : i ≥ 1} are independent. By (1.5), we conclude that

EXv(
√
rn)

(
1Dc

n,ξrn−√
rn

∣∣Xξ(s) : s ≥ 0
)
≤ EXv(

√
rn)

 ∑
i:di<rn−

√
rn

1{Oi>ec0
√

rn
}∣∣Xξ(s) : s ≥ 0


= 2

∫ rn−
√
rn

0

PXv(
√
rn)

(
L̂ > ec0

√
rn
)
ds ≤ 2rn

Ex

(
log1+λ

+ L
)

(c0
√
rn)1+λ

.
1

r
(λ−1)/2
n

. (3.20)

Plugging (3.20) into (3.19), we get

TAn
(Xv(

√
rn), rn −

√
rn)

.
ern−

√
rn

r
(λ−1)/2
n

PXv(
√
rn)

(
min

s≤rn−
√
rn

Xξ(s) > 0, Xrn−
√
rn ∈ An

)
. (3.21)
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Since, under PXv(
√
rn), Xξ(t) is a standard Brownian motion with drift −θ. By Lemma

2.4 (i) and (ii) with A = An, we get that

PXv(
√
rn)

(
min

s≤rn−
√
rn

Xξ(s) > 0, Xrn−
√
rn ∈ An

)
.

Xv(
√
rn)e

θXv(
√
rn)

(rn −√
rn)bθe

θ2

2 (rn−
√
rn)

.
Xv(

√
rn)e

θXv(
√
rn)

rbθn e
θ2

2 (rn−
√
rn)

. (3.22)

Combining (3.18), (3.21) and (3.22), we get that

rm+bθ
n

e(1−
θ2

2 )rn
Ex

(
Z(0,∞)
rn (An)− Z(0,∞),G

rn (An)
∣∣F√

rn

)
.

rm+bθ
n

e(1−
θ2

2 )rn

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0

} ern−√
rn

r
(λ−1)/2
n

Xv(
√
rn)e

θXv(
√
rn)

rbθn e
θ2

2 (rn−
√
rn)

.

=
1

r
(λ−1−2m)/2
n

e−(1− θ2

2 )
√
rn

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0

}Xv(
√
rn)e

θXv(
√
rn)

=
1

r
(λ−1−2m)/2
n

M
(1,θ)√
rn

,

with M
(1,θ)√
rn

given in (1.6). Now taking expectation with respect to Px, we get that

rm+bθ
n

e(1−
θ2

2 )rn
Ex

(
Z(0,∞)
rn (An)− Z(0,∞),G

rn (An)
)
.

1

r
(λ−1−2m)/2
n

. (3.23)

Step 2: By (3.17) and the branching property,

Z(0,∞),G
rn (An)− Ex

(
Z(0,∞),G
rn (An)

∣∣F√
rn

)
=:

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0

}Kn,u,

where conditioned on F√
rn ,

{
Kn,v : v ∈ N(

√
rn)
}
are centered independent random

variables defined by

Kn,v =
∑

u∈N(rn):v≤u

1{min√
rn<s≤rn Xu(s)>0

}1An
(Xu(rn))1Gn,u

− Ex

 ∑
u∈N(rn):v≤u

1{min√
rn<s≤rn Xu(s)>0

}1An(Xu(rn))1Gn,u

∣∣∣F√
rn

 .

Thus, by Lemma 2.2, for any fixed ` with 1 < ` < min{2, 2/θ2} and (`− 1) θ
2

2 < 1− θ2

2 ,

Ex

(∣∣∣Z(0,∞),G
rn (An)− Ex

(
Z(0,∞),G
rn (An)

∣∣F√
rn

)∣∣∣` ∣∣∣∣F√
rn

)
≤ 2

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0

}Ex

(
|Kn,v|`

∣∣F√
rn

)
.

∑
v∈N(

√
rn)

Mn,v, (3.24)

where for each v ∈ N(
√
rn),

Mn,v := EXv(
√
rn)


 ∑

u∈N(rn−
√
rn)

1{mins≤rn−√
rn Xu(s)>0

}1An
(Xu(rn −

√
rn)) 1Dn,u

`
 .
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Set Vn :=
∑

u∈N(rn−
√
rn)

1{mins≤rn−√
rn Xu(s)>0

}1An

(
Xu(rn −√

rn)
)
1Dn,u

. By Lemma 2.1

and the fact that An ⊂ (0,∞), Vn ≤
∑

u∈N(rn−
√
rn)

1(0,∞)(Xu(rn −√
rn)), we have

Mn,v = ern−
√
rnEXv(

√
rn)

(
1{mins≤rn−√

rn Xξ(s)>0
}1An

(Xξ(rn −
√
rn)) 1Dn,ξrn−√

rn
V `−1
n

)
≤ ern−

√
rnEXv(

√
rn)

1Dn,ξrn−√
rn
1{Xξ(rn−

√
rn)>0}

 ∑
u∈N(rn−

√
rn)

1{Xu(rn−
√
rn)>0}

`−1
 .

(3.25)

Given Xξ, di and Oi, by the Markov property and the inequality (
∑n

i=1 xi)
p ≤

∑n
i=1 x

p
i for

all xi ≥ 0 and p ∈ (0, 1), it holds that

1{
Dn,ξrn−√

rn

}EXv(
√
rn)


 ∑

u∈N(rn−
√
rn)

1{Xu(rn−
√
rn)>0}

`−1 ∣∣Xξ, di, Oi : i ≥ 1


≤ 1{

Dn,ξrn−√
rn

} ∑
i:di<rn−

√
rn

(Oi − 1)EXξ(di)


 ∑

u∈N(z)

1{Xu(z)>0}

`−1
∣∣z=rn−

√
rn−di

≤ ec0
√
rn

∑
i:di<rn−

√
rn

EXξ(di)

 ∑
u∈N(z)

1{Xu(z)>0}

`−1 ∣∣
z=rn−

√
rn−di

, (3.26)

where in the last inequality, we used the fact that, on the eventDn,ξrn−√
rn
, Oi−1 ≤ ec0

√
rn

and the fact that E(|X|p) ≤ E(|X|)p for p ∈ (0, 1). Note that by Lemma 2.1 and Lemma
2.4 (iii),

Ex

 ∑
u∈N(z)

1{Xu(z)>0}

 ≤ e(1−
θ2

2 )zeθx.

Using the fact that di are the atoms of a Poisson process with rate 2, taking expectation
with respect to PXv(

√
rn) (·|Xξ) in (3.26), we get that

EXv(
√
rn)

1{
Dn,ξrn−√

rn

}
 ∑

u∈N(rn−
√
rn)

1{Xu(rn−
√
rn)>0}

`−1 ∣∣Xξ


≤ 2ec0

√
rn

∫ rn−
√
rn

0

eθ(`−1)Xξ(s)e(1−
θ2

2 )(`−1)(rn−
√
rn−s)ds. (3.27)

Combining (3.25) and (3.27), noting that Xξ(s) under Px is a standard Brownian motion
with drift −θ, and applying Lemma 2.4(iii), we conclude that

Mn,v

. ern−
√
rnEXv(

√
rn)

(
ec0

√
rn1{Xξ(rn−

√
rn)>0}

∫ rn−
√
rn

0

eθ(`−1)Xξ(s)e(1−
θ2

2 )(`−1)(rn−
√
rn−s)ds

)

= ern−
√
rnec0

√
rn

∫ rn−
√
rn

0

Π−θ
Xv(

√
rn)

(
eθ(`−1)BsΠ−θ

Bs

(
Brn−

√
rn−s > 0

))
× e(1−

θ2

2 )(`−1)(rn−
√
rn−s)ds

≤ ern−
√
rnec0

√
rn

∫ rn−
√
rn

0

Π−θ
Xv(

√
rn)

(
e`θBs

)
e−

θ2

2 (rn−
√
rn−s)e(1−

θ2

2 )(`−1)(rn−
√
rn−s)ds.
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Using elementary calculus in the last integral, we get

Mn,v . e`θXv(
√
rn)e`(1−

θ2

2 )(rn−
√
rn)ec0

√
rn

∫ rn−
√
rn

0

e−s(`−1)(1− θ2

2 −(`−1) θ2

2 )ds

. e`θXv(
√
rn)e`(1−

θ2

2 )(rn−
√
rn)ec0

√
rn .

Plugging this upper bound into (3.24), we obtain that

r
`(m+bθ)
n

e`(1−
θ2

2 )rn
Ex

(∣∣∣Z(0,∞),G
rn (An)− Ex

(
Z(0,∞),G
rn (An)

∣∣F√
rn

)∣∣∣` ∣∣∣∣F√
rn

)
.

r
`(m+bθ)
n

e`(1−
θ2

2 )rn

∑
v∈N(

√
rn)

eθ`Xv(
√
rn)e`(1−

θ2

2 )(rn−
√
rn)ec0

√
rn

=
r
`(m+bθ)
n ec0

√
rn

e`(1−
θ2

2 )
√
rn

∑
v∈N(

√
rn)

eθ`Xv(
√
rn). (3.28)

Taking expectation in (3.28) with respect to Px, and using Lemma 2.1, we get

r
`(m+bθ)
n

e`(1−
θ2

2 )rn
Ex

(∣∣∣Z(0,∞),G
rn (An)− Ex

(
Z(0,∞),G
rn (An)

∣∣F√
rn

)∣∣∣`)

.
r
`(m+bθ)
n ec0

√
rn

e`(1−
θ2

2 )
√
rn

Ex

 ∑
v∈N(

√
rn)

eθ`Xv(
√
rn)

 =
r
`(m+bθ)
n ec0

√
rn

e`(1−
θ2

2 )
√
rn

e
√
rnEx

(
eθ`Xξ(

√
rn)
)

= r`(m+bθ)
n eθ`xe−((`−1)(1− θ2`

2 )−c0)
√
rn . (3.29)

Step 3: Fix c0 ∈ (0, (`− 1)(1− θ2`
2 )) and set c1 := ((`− 1)(1− θ2`

2 )− c0)/` > 0. Using

(3.14) with X = Z
(0,∞)
rn (An) and Y = Z

(0,∞),G
rn (An), we have

Ex

(
rmn

r−bθ
n e(1−

θ2

2 )rn

∣∣∣Z(0,∞)
rn (An)− Ex

(
Z(0,∞)
rn (An)

∣∣F√
rn

)∣∣∣)

≤ 2
rm+bθ
n

e(1−
θ2

2 )rn
Ex

(
Z(0,∞)
rn (An)− Z(0,∞),G

rn (An)
)

+

(
r
`(m+bθ)
n

e`(1−
θ2

2 )rn
Ex

(∣∣∣Z(0,∞),G
rn (An)− Ex

(
Z(0,∞),G
rn (An)

∣∣F√
rn

)∣∣∣`))1/`

.
1

r
(λ−1−2m)/2
n

+ r(m+bθ)
n e−c1

√
rn =

1

n(λ−1−2m)/(2κ)
+ n(m+bθ)/κe−c1n

1/(2κ)

,

where in the last inequality, we used (3.23) and (3.29). Since λ > 2m + 2κ + 1, we
conclude that for any ε > 0,

∞∑
n=1

Px

(
rmn

r−bθ
n e(1−

θ2

2 )rn

∣∣∣Z(0,∞)
rn (An)− Ex

(
Z(0,∞)
rn (An)

∣∣F√
rn

)∣∣∣ > ε

)
(3.30)

.
∞∑

n=1

(
1

n(λ−1−2m)/(2κ)
+ n(m+bθ)/κe−c1n

1/(2κ)

)
< ∞,

which completes the proof of the Lemma.

Applying Lemma 3.2 with An = A being a subinterval of (0,∞), we see that (3.15)
holds for any fixed interval A. It is not clear that (3.15) holds simultaneously for all
intervals A. In the next lemma we prove a slightly stronger result.

EJP 30 (2025), paper 28.
Page 21/40

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1289
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Asymptotic expansion for branching killed BM

Lemma 3.3. Assume x > 0 and θ ∈ [0,
√
2). For any given m ∈ N and κ > 1, suppose

that (1.5) holds for some λ > 2m + 2κ + 1. Then there exists Ω̂ = Ω̂(x, θ,m, κ, λ) with
Px(Ω̂) = 1 such that for any w ∈ Ω̂ and any interval A ⊂ (0,∞), it holds that

lim
n→∞

rmn

Z
(0,∞)
rn (A)− Ex

(
Z

(0,∞)
rn (A)

∣∣∣F√
rn

)
r
−bAθ
n e(1−

θ2

2 )rn
= 0, (3.31)

where

bAθ :=

{
3/2, θ = 0 and supA < ∞ or θ ∈ (0,

√
2);

1/2, θ = 0 and supA = ∞.
(3.32)

Proof. Step 1: Fix m ∈ N, κ > 1 and ε > 0. For any k ∈ N and n ≥ 1, define
a
(n)
i := k + i/[rm+ε

n ], Bi(n) := (a
(n)
i ,∞) and Bi(n) := [a

(n)
i ,∞) for 0 ≤ i ≤ 2[rm+ε

n ]. In this
step, we are going to prove that, for any fixed k ∈ N,

lim
n→∞

rmn

sup0≤i≤2[rm+ε
n ]

∣∣∣Z(0,∞)
rn (Bi(n))− Ex

(
Z

(0,∞)
rn (Bi(n))

∣∣∣F√
rn

)∣∣∣
(r

−1/2
n 1θ=0 + r

−3/2
n 1θ∈(0,

√
2))e

(1− θ2

2 )rn
= 0, Px-a.s.,

(3.33)

lim
n→∞

rmn

sup0≤i≤2[rm+ε
n ]

∣∣∣Z(0,∞)
rn (Bi(n))− Ex

(
Z

(0,∞)
rn (Bi(n))

∣∣∣F√
rn

)∣∣∣
(r

−1/2
n 1θ=0 + r

−3/2
n 1θ∈(0,

√
2))e

(1− θ2

2 )rn
= 0, Px-a.s.,

(3.34)

lim
n→∞

rmn

sup0≤i≤2[rm+ε
n ]

∣∣∣Z(0,∞)
rn (Bi(n)

c)− Ex

(
Z

(0,∞)
rn (Bi(n)

c)
∣∣∣F√

rn

)∣∣∣
r
−3/2
n e(1−

θ2

2 )rn
= 0, Px-a.s.

(3.35)

and

lim
n→∞

rmn

sup0≤i≤2[rm+ε
n ]

∣∣∣Z(0,∞)
rn (Bi(n)

c)− Ex

(
Z

(0,∞)
rn (Bi(n)

c)
∣∣∣F√

rn

)∣∣∣
r
−3/2
n e(1−

θ2

2 )rn
= 0, Px-a.s.

(3.36)

We only prove (3.33). The proofs of (3.34), (3.35) and (3.36) are similar. Recall the
definition of Z(0,∞),G

rn in (3.16) and the fact that Bi(n) ⊂ (k,∞), we see that

sup
0≤i≤2[rm+ε

n ]

(
Z(0,∞)
rn (Bi(n))− Z(0,∞),G

rn (Bi(n))
)

= sup
0≤i≤2[rm+ε

n ]

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1Bi(n)(Xu(rn))1Gc
n,u

≤
∑

u∈N(rn)

1{mins≤rn Xu(s)>0}1[k,∞)(Xu(rn))1Gc
n,u

= Z(0,∞)
rn ([k,∞))− Z(0,∞),G

rn ([k,∞)).

Therefore, by (3.23) with An = [k,∞), we have

r
m+1/2
n 1θ=0 + r

m+3/2
n 1θ∈(0,

√
2)

e(1−
θ2

2 )rn
Ex

(
sup

0≤i≤2[rm+ε
n ]

(
Z(0,∞)
rn (Bi(n))− Z(0,∞),G

rn (Bi(n))
))

.
1

r
(λ−1−2m)/2
n

.
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On the other hand, for any fixed ` with 1 < ` < min{2, 2/θ2} and (` − 1) θ
2

2 < 1 − θ2

2 , it
naturally holds that

1

e`(1−
θ2

2 )rn
Ex

(
sup

0≤i≤2[rm+ε
n ]

∣∣∣Z(0,∞),G
rn (Bi(n))− Ex

(
Z(0,∞),G
rn (Bi(n))

∣∣F√
rn

)∣∣∣`)

≤ 1

e`(1−
θ2

2 )rn

2[rm+ε
n ]∑
i=0

Ex

(∣∣∣Z(0,∞),G
rn (Bi(n))− Ex

(
Z(0,∞),G
rn (Bi(n))

∣∣F√
rn

)∣∣∣`)
. eθ`xe−((`−1)(1− θ2`

2 )−c0)
√
rn ·

(
2[rm+ε

n ] + 1
)
,

where the last inequality follows from (3.29). Using a similar argument leading to (3.30),
we get (3.33).

Step 2: In this step, we prove that

lim
n→∞

rmn

sup0≤i<2[rm+ε
n ]Ex

(
Z

(0,∞)
rn ([a

(n)
i , a

(n)
i+1])

∣∣∣F√
rn

)
r
−3/2
n e(1−

θ2

2 )rn
= 0, Px-a.s. (3.37)

Using the Markov property and Lemma 2.1, we see that

sup0≤i<2[rm+ε
n ]Ex

(
Z

(0,∞)
rn ([a

(n)
i , a

(n)
i+1])

∣∣∣F√
rn

)
r
−3/2
n e(1−

θ2

2 )rn

= sup
0≤i<2[rm+ε

n ]

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−3/2
n e(1−

θ2

2 )rn
EXv(

√
rn)

(
Z

(0,∞)
rn−

√
rn
([a

(n)
i , a

(n)
i+1])

)
= sup

0≤i<2[rm+ε
n ]

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−3/2
n e(1−

θ2

2 )rn

× ern−
√
rnΠ−θ

Xv(
√
rn)

(
1{mins≤rn−√

rn Bs>0}1[a(n)
i ,a

(n)
i+1]

(Brn−
√
rn)
)
.

Combining the above inequality, Lemma 2.4 and the fact that a(n)i+1 ≤ k + 2, we see that

rmn

sup0≤i<2[rm+ε
n ]Ex

(
Z

(0,∞)
rn ([a

(n)
i , a

(n)
i+1])

∣∣∣F√
rn

)
r
−3/2
n e(1−

θ2

2 )rn

.
(k + 2)rmn
[rm+ε

n ]

r
3/2
n

(rn −√
rn)3/2

e−(1− θ2

2 )
√
rn

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}Xv(

√
rn)e

θXv(
√
rn)

.
k + 2

rεn
M

(1,θ)√
rn

n→∞−→ 0,

which implies (3.37).

Step 3: In this step, we prove (3.31). For any k ∈ N, there exists Ω̃k with Px(Ω̃k) = 1

such that (3.33), (3.34), (3.35), (3.36) and (3.37) hold for all ω ∈ Ω̃k. Now define

Ω̂ :=
⋂
k∈N

Ω̃k, (3.38)

then Px(Ω̂) = 1. We first deal with the case of all A = (a,∞) with a ≥ 0. Suppose that
a ∈ (k, k + 1] for some k ∈ N, then for each n ∈ N, there exists 0 ≤ i < [rm+ε

m ] such that
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a ∈ (a
(n)
i , a

(n)
i+1]. Thus,

Z(0,∞)
rn (A)− Ex

(
Z(0,∞)
rn (A)

∣∣∣F√
rn

)
≤ Z(0,∞)

rn (Bi(n))− Ex

(
Z(0,∞)
rn (Bi+1(n))

∣∣∣F√
rn

)
≤ sup

0≤i≤2[rm+ε
n ]

∣∣∣Z(0,∞)
rn (Bi(n))− Ex

(
Z(0,∞)
rn (Bi(n))

∣∣∣F√
rn

)∣∣∣
+ sup

0≤i<2[rm+ε
n ]

Ex

(
Z(0,∞)
rn ([a

(n)
i , a

(n)
i+1])

∣∣∣F√
rn

)
.

Similarly, we also have the lower bound:

Z(0,∞)
rn (A)− Ex

(
Z(0,∞)
rn (A)

∣∣∣F√
rn

)
≥ − sup

0≤i≤2[rm+ε
n ]

∣∣∣Z(0,∞)
rn (Bi(n))− Ex

(
Z(0,∞)
rn (Bi(n))

∣∣∣F√
rn

)∣∣∣
− sup

0≤i<2[rm+ε
n ]

Ex

(
Z(0,∞)
rn ([a

(n)
i , a

(n)
i+1])

∣∣∣F√
rn

)
.

Therefore, combining (3.33), (3.37) and the definition of Ω̂, we conclude that (3.31) holds
for all ω ∈ Ω̂ and A = (a,∞) with a ≥ 0. The proofs of the other cases are similar with the
help of (3.34), (3.35) and (3.36) and we omit the details. The proof is now complete.

Proposition 3.4. Let x > 0. For any given m ∈ N and κ > 2m+1, if (1.5) holds for some
λ > 2m+ 2κ+ 2, then (i) for any θ ∈ (0,

√
2), x > 0, Px-almost surely, simultaneously for

all A = (a,∞) and A = [a,∞) with a ≥ 0, as n → ∞,

Z
(0,∞)
rn (A)

r
−3/2
n e(1−

θ2

2 )rn

= −
√

2

π

m∑
`=0

H2`+2(0)

r`n

∑̀
k=0

M
(2k+1,θ)
∞

(2k + 1)!(2`− 2k + 1)!

∫
A

z2`−2k+1e−θzdz + o(r−m
n );

(ii) for θ = 0 and any x > 0, Px-almost surely, simultaneously for all bounded intervals
A ⊂ (0,∞), as n → ∞,

Z
(0,∞)
rn (A)

r
−3/2
n ern

= −
√

2

π

m∑
`=0

H2`+2(0)

r`n

∑̀
k=0

M
(2k+1,0)
∞

(2k + 1)!(2`− 2k + 1)!

∫
A

z2`−2k+1dz + o(r−m
n );

(iii) for θ = 0 and any x > 0, Px-almost surely, simultaneously for all A = (a,∞) and
A = [a,∞) with a ≥ 0, as n → ∞,

Z
(0,∞)
rn (A)

r
−1/2
n ern

=

√
2

π

m∑
`=0

H2`(0)

r`n

∑̀
k=0

M
(2k+1,0)
∞

(2k + 1)!(2`− 2k)!
a2`−2k + o(r−m

n ).

Proof. First using Lemma 3.3 and then the Markov property, we get that for any ω ∈ Ω̂

and any interval A ⊂ (0,∞),

Z
(0,∞)
rn (A)

r
−bAθ
n e(1−

θ2

2 )rn
= o(r−m

n ) +
Ex

(
Z

(0,∞)
rn (A)

∣∣∣F√
rn

)
r
−bAθ
n e(1−

θ2

2 )rn
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= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−bAθ
n e(1−

θ2

2 )rn
EXv(

√
rn)

(
Z

(0,∞)
rn−

√
rn
(A)
)

= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−bAθ
n e(1−

θ2

2 )rn

× ern−
√
rnΠ−θ

Xv(
√
rn)

(
1{mins≤rn−√

rn Bs>0}1A(Brn−
√
rn)
)
,

where bAθ is defined in (3.32), and in the last equality we used Lemma 2.1. Let K :=

2m/κ+ 3 and fix a sufficiently small ε > 0 such that

K(1− ε) >
2m+ 1

κ
+ 2. (3.39)

Step 1: In this step, we prove that, for θ ∈ [0,
√
2) and x > 0, Px-almost surely, for all

intervals A ⊂ (0,∞),

Z
(0,∞)
rn (A)

r
−bAθ
n e(1−

θ2

2 )rn
= o(r−m

n ) +
∑

v∈N(
√
rn)

1{mins≤√
rn Xv(s)>0}

r
−bAθ
n e(1−

θ2

2 )rn
1{Xv(

√
rn)≤

√
K

√
rn logn}

× ern−
√
rnΠ−θ

Xv(
√
rn)

(
1{mins≤rn−√

rn Bs>0}1A(Brn−
√
rn)
)
. (3.40)

Using Lemma 2.4 (i) (ii) first, and then Lemma 2.1, we get

∞∑
n=2

rmn Ex

(
sup

A⊂(0,∞)

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−bAθ
n e(1−

θ2

2 )rn
1{Xv(

√
rn)>

√
K

√
rn logn}

× ern−
√
rnΠ−θ

Xv(
√
rn)

(
1{mins≤rn−√

rn Bs>0}1A(Brn−
√
rn)
))

.
∞∑

n=2

rmn Ex

( ∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−bAθ
n e(1−

θ2

2 )rn
1{Xv(

√
rn)>

√
K

√
rn logn}

×Xv(
√
rn)e

θXv(
√
rn)

e(1−
θ2

2 )(rn−
√
rn)

(rn −√
rn)b

A
θ

)

=

∞∑
n=2

rmn r
bAθ
n e

θ2

2

√
rn(

rn −√
rn
)bAθ

×Ex

(
1{mins≤√

rn Xξ(s)>0}1{Xξ(
√
rn)>

√
K

√
rn logn}Xξ(

√
rn)e

θXξ(
√
rn)

)
. (3.41)

Recall that (Xξ(t),Px) is equal in law to a standard Brownian motion with drift −θ. By
Lemma 2.3 (i), recalling the choice of ε in (3.39), the left-hand side of (3.41) is bounded
from above by

∞∑
n=2

rmn r
bAθ
n(

rn −√
rn
)bAθ xeθxΠ↑

x

(
B√

rn >
√

K
√
rn log n

)

≤ xeθx
∞∑

n=2

rmn r
bAθ
n(

rn −√
rn
)bAθ 1

nK(1−ε)/2
Π↑

x

(
e(1−ε)

(
B√

rn

)2/(2√rn)
)
, (3.42)
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where in the last inequality we used the Markov inequality. Using Lemma 2.3 (ii), we get

Π↑
x

(
e(1−ε)

(
B√

rn

)2/(2√rn)
)
=

∫ ∞

0

e(1−ε)y2/(2
√
rn)p↑√rn

(x, y)dy

.
∫ ∞

0

e(1−ε)y2/(2
√
rn)

y2

r
3/4
n

e−(x−y)2/(2
√
rn)dy

=

∫ ∞

0

e(1−ε)y2/2y2e−(xr−1/4
n −y)2/2dy . 1. (3.43)

Combining (3.42), (3.43) and the fact that rn(rn −√
rn)

−1 . 1, we obtain

∞∑
n=2

rmn Ex

(
sup

A⊂(0,∞)

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−bAθ
n e(1−

θ2

2 )rn
1{Xv(

√
rn)>

√
K

√
rn logn}

× ern−
√
rnΠ−θ

Xv(
√
rn)

(
1{mins≤rn−√

rn Bs>0}1A(Brn−
√
rn)
))

.
∞∑

n=2

rmn
nK(1−ε)/2

=

∞∑
n=2

nm/κ

nK(1−ε)/2
< ∞,

which implies that Px-almost surely,

rmn sup
A⊂(0,∞)

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−bAθ
n e(1−

θ2

2 )rn
1{Xv(

√
rn)>

√
K

√
rn logn}

× ern−
√
rnΠ−θ

Xv(
√
rn)

(
1{mins≤rn−√

rn Bs>0}1A(Brn−
√
rn)
)

n→∞−→ 0,

and thus (3.40) holds.
Step 2: In this step, we prove (i) and (ii). Define Bθ to be the collection of all

subintervals of (0,∞) if θ > 0 and the collection of all bounded subintervals of (0,∞) if
θ = 0. Recall that bAθ = 3/2 is defined in (3.32). Let Ω̂1 with Px(Ω̂1) = 1 be such that

limt→∞ M
(1,θ)
t exists and (3.40) holds for all ω ∈ Ω̂1 and all intervals A. In this case, let

J := 2m+ 2κ+ 2 > 2m+ Kκ+1
2 . By using Lemma 2.3 (i) in the first two equalities below,

Lemma 2.8 in the third, we get that for all ω ∈ Ω̂1 and all A ∈ Bθ,

Z
(0,∞)
rn (A)

r
−3/2
n e(1−

θ2

2 )rn

= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−3/2
n e(1−

θ2

2 )
√
rn

Xv(
√
rn)e

θXv(
√
rn)1{Xv(

√
rn)≤

√
K

√
rn logn}

×Π↑
Xv(

√
rn)

(
1A(Brn−

√
rn)

Brn−
√
rne

θBrn−√
rn

)

= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e(1−
θ2

2 )
√
rn

eθXv(
√
rn)1{Xv(

√
rn)≤

√
K

√
rn logn}

×
∫
A

r
3/2
n

eθz
√
rn −√

rn

(
φ

(
z −Xv(

√
rn)√

rn −√
rn

)
− φ

(
z +Xv(

√
rn)√

rn −√
rn

))
dz

= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e(1−
θ2

2 )
√
rn

eθXv(
√
rn)1{Xv(

√
rn)≤

√
K

√
rn logn}

∫
A

rne
−θz

×

(
2φ

(
z

√
rn

) J∑
k=0

1

(2k + 1)!

1

r
(2k+1)/2
n

H2k+1

(
z

√
rn

)
r(2k+1)/4
n H2k+1

(
Xv(

√
rn)

r
1/4
n

)
+ εm,v,z,n

)
dz,
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where the error term εm,v,z,n satisfies that

rm+1
n sup

z>0
sup

v∈N(
√
rn)

|εm,v,z,n| 1{Xv(
√
rn)≤

√
K

√
rn logn}

n→∞−→ 0.

Noticing that e−(1− θ2

2 )t
∑

v∈N(t) e
θXv(t) is a non-negative martingale, and that

∫
A
e−θzdz <

∞ for any A ∈ Bθ, we see that for all ω ∈ Ω̂1 and A ∈ Bθ,

rmn
∑

v∈N(
√
rn)

1{mins≤√
rn Xv(s)>0}

e(1−
θ2

2 )
√
rn

eθXv(
√
rn)1{Xv(

√
rn)≤

√
K

√
rn logn}

∫
A

rne
−θz |εm,v,z,n|dz

≤
(
e−(1− θ2

2 )
√
rn

∑
v∈N(

√
rn)

eθXv(
√
rn)
)(∫

A

e−θzdz

)
× rm+1

n sup
z>0

sup
v∈N(

√
rn)

|εm,v,z,n| 1{Xv(
√
rn)≤

√
K

√
rn logn}

n→∞−→ 0.

Therefore, Px-almost surely, for all A ∈ Bθ,

Z
(0,∞)
rn (A)

r
−3/2
n e(1−

θ2

2 )rn

= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e(1−
θ2

2 )
√
rn

eθXv(
√
rn)1{Xv(

√
rn)≤

√
K

√
rn logn}

∫
A

rne
−θz

× 2φ

(
z

√
rn

) J∑
k=0

1

(2k + 1)!

1

r
(2k+1)/2
n

H2k+1

(
z

√
rn

)
r(2k+1)/4
n H2k+1

(
Xv(

√
rn)

r
1/4
n

)
dz

= o(r−m
n ) + 2

J∑
k=0

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e(1−
θ2

2 )
√
rn

eθXv(
√
rn)r(2k+1)/4

n H2k+1

(
Xv(

√
rn)

r
1/4
n

)

× 1{Xv(
√
rn)≤

√
K

√
rn logn}

∫
A

e−θzφ

(
z

√
rn

)
1

(2k + 1)!

1

r
(2k−1)/2
n

H2k+1

(
z

√
rn

)
dz. (3.44)

Now we show that we can drop the indicator function from the last line above. Define
Bθ,N to be Bθ if θ > 0 and to be the collection of all intervals A ⊂ (0,∞) with supA ≤ N

if θ = 0. Note that for all 0 ≤ k ≤ J , applying Lemma 2.5(ii) and the inequality

sup
A∈Bθ,N

∫
A

e−θzφ

(
z

√
rn

) ∣∣∣∣H2k+1

(
z

√
rn

)∣∣∣∣dz . sup
A∈Bθ,N

∫
A

e−θzdz < ∞

first and then Lemma 2.1, we get that for any N > 0,

∞∑
n=2

rmn Ex

(
sup

A⊂Bθ,N

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e(1−
θ2

2 )
√
rn

eθXv(
√
rn)

∣∣∣∣r(2k+1)/4
n H2k+1

(
Xv(

√
rn)

r
1/4
n

)∣∣∣∣
× 1{Xv(

√
rn)>

√
K

√
rn logn}

∫
A

e−θzφ

(
z

√
rn

)
1

(2k + 1)!

1

r
(2k−1)/2
n

∣∣∣∣H2k+1

(
z

√
rn

)∣∣∣∣)dz)
.

∞∑
n=2

rmn Ex

( ∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e(1−
θ2

2 )
√
rn

eθXv(
√
rn)r(2k+1)/4

n

(∣∣∣∣Xv(
√
rn)

r
1/4
n

∣∣∣∣2k+1

+

∣∣∣∣Xv(
√
rn)

r
1/4
n

∣∣∣∣
)

× 1

r
(2k−1)/2
n

1{Xv(
√
rn)>

√
K

√
rn logn}

)

=

∞∑
n=2

rmn e
θ2

2

√
rn

r
(2k−1)/2
n

Ex

(
1{mins≤√

rn Xξ(s)>0
}Xξ(

√
rn)e

θXξ(
√
rn)

×
(
Xξ(

√
rn)

2k + rk/2n

)
1{Xξ(

√
rn)>

√
K

√
rn logn}

)
. (3.45)

EJP 30 (2025), paper 28.
Page 27/40

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1289
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Asymptotic expansion for branching killed BM

Recall the choice of ε in (3.39). By Lemma 2.3, the right-hand side of (3.45) is equal to

∞∑
n=2

rmn

r
(2k−1)/2
n

xeθxΠ↑
x

((
B2k√

rn
+ rk/2n

)
1{B√

rn>
√

K
√
rn logn}

)
≤

∞∑
n=2

rmn

r
(2k−1)/2
n n(1−ε)K/2

xeθxΠ↑
x

((
B2k√

rn
+ rk/2n

)
e(1−ε)(B√

rn )2/(2
√
rn)
)

.
∞∑

n=2

rmn

r
(2k−1)/2
n n(1−ε)K/2

∫ ∞

0

y2

r
3/4
n

e−(x−y)2/(2
√
rn)
(
y2k + rk/2n

)
e(1−ε)y2/(2

√
rn)dy

=

∞∑
n=2

rmn r
k/2
n

r
(2k−1)/2
n n(1−ε)K/2

∫ ∞

0

y2e−(xr−1/4
n −y)2/2

(
y2k + 1

)
e(1−ε)y2/2dy

≤
∞∑

n=2

n(2m+1)/(2κ)

n(1−ε)K/2

∫ ∞

0

y2e−(xr−1/4
n −y)2/2

(
y2k + 1

)
e(1−ε)y2/2dy, (3.46)

which is finite. Hence, combining (3.45) and (3.46), we conclude that for all 0 ≤ k ≤ J,

almost surely for all A ∈ Bθ,N ,

rmn
∑

v∈N(
√
rn)

1{mins≤√
rn Xv(s)>0}

e(1−
θ2

2 )
√
rn

eθXv(
√
rn)

∣∣∣∣r(2k+1)/4
n H2k+1

(
Xv(

√
rn)

r
1/4
n

)∣∣∣∣
× 1{Xv(

√
rn)>

√
K

√
rn logn}

∫
A

e−θzφ

(
z

√
rn

)
1

(2k + 1)!

1

r
(2k−1)/2
n

∣∣∣∣H2k+1

(
z

√
rn

)∣∣∣∣dz n→∞−→ 0.

Plugging this back to (3.44) and recalling the definition of the martingales in (1.6), we
obtain that almost surely for all A ∈ Bθ,N ,

Z
(0,∞)
rn (A)

r
−3/2
n e(1−

θ2

2 )rn
= o(r−m

n )

+ 2

J∑
k=0

M
(2k+1,θ)√
rn

∫
A

e−θzφ

(
z

√
rn

)
1

(2k + 1)!

1

r
(2k−1)/2
n

H2k+1

(
z

√
rn

)
dz. (3.47)

Letting N → ∞, we see that almost surely (3.47) holds for all A ∈ Bθ.
For all m + 1 ≤ k ≤ J = 2m + 2κ + 2, we have λ > J ≥ k. Therefore, for all

m+ 1 ≤ k ≤ J , by Lemma 2.5 (ii), Proposition 3.1(ii) and the fact that φ(y)|H2k+1(y)| .
φ(y)|y|(|y|2k + 1) . |y|,∣∣∣M (2k+1,θ)√

rn

∣∣∣ ∫
A

e−θzφ

(
z

√
rn

)
1

(2k + 1)!

1

r
(2k−1)/2
n

∣∣∣∣H2k+1

(
z

√
rn

)∣∣∣∣dz
.
∣∣∣M (2k+1,θ)√

rn

∣∣∣ ∫
A

e−θz 1

r
(2k−1)/2
n

z
√
rn

dz =

∣∣∣M (2k+1,θ)√
rn

∣∣∣
rkn

∫
A

ze−θzdz = o(r−m
n ). (3.48)

Combining (3.47) and (3.48), we get that

Z
(0,∞)
rn (A)

r
−3/2
n e(1−

θ2

2 )rn
= o(r−m

n )

+ 2

m∑
k=0

M
(2k+1,θ)√
rn

∫
A

e−θzφ

(
z

√
rn

)
1

(2k + 1)!

1

r
(2k−1)/2
n

H2k+1

(
z

√
rn

)
dz.

Noticing that λ > 2m, let η := (λ − 2m)/2 < λ − 2m. By Proposition 3.1(ii), similar to
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(3.48), for all 0 ≤ k ≤ m,

∣∣∣M (2k+1,θ)√
rn

−M (2k+1,θ)
∞

∣∣∣ ∫
A

e−θzφ

(
z

√
rn

)
1

(2k + 1)!

1

r
(2k−1)/2
n

∣∣∣∣H2k+1

(
z

√
rn

)∣∣∣∣dz
.

∣∣∣M (2k+1,θ)√
rn

−M
(2k+1,θ)
∞

∣∣∣
rkn

∫
A

ze−θzdz = o(
√
rn

−(λ−k)+η
r−k
n ) = o(r−m

n r
− k

2
n )

= o(r−m
n ). (3.49)

Since λ > 2m+ 2κ+ 2, we have

Z
(0,∞)
rn (A)

r
−3/2
n e(1−

θ2

2 )rn
= o(r−m

n )

+ 2

m∑
k=0

M (2k+1,θ)
∞

∫
A

e−θzφ

(
z

√
rn

)
1

(2k + 1)!

1

r
(2k−1)/2
n

H2k+1

(
z

√
rn

)
dz.

By (2.7) and Lemma 2.5(i), for any 0 ≤ k ≤ m and x > 0, there exists ξ ∈ (0, x) such that

φ(x)H2k+1(x) =

2m+1∑
j=0

dj

dxj
(φH2k+1) (0)

xj

j!
+

x2m+2

(2m+ 2)!

d2m+2

dx2m+2
(φH2k+1) (ξ)

= (−1)2k+1
m∑
j=0

d2k+2+2jφ(0)

dx2k+2+2j

x2j+1

(2j + 1)!
+O(x2m+2)

= −
m∑
j=0

H2k+2j+2(0)√
2π

x2j+1

(2j + 1)!
+O(x2m+2),

where in the second equality we used the property that H2`+1(0) = 0. Therefore, taking
x = z/

√
rn in the above equation,

Z
(0,∞)
rn (A)

r
−3/2
n e(1−

θ2

2 )rn
= o(r−m

n )−
m∑

k=0

2

(2k + 1)!

1

r
(2k−1)/2
n

M (2k+1,θ)
∞

×
∫
A

e−θz

 m∑
j=0

H2k+2j+2(0)

(2j + 1)!
√
2π

z2j+1

r
(2j+1)/2
n

+O

(
z2m+2

rm+1
n

) dz

= o(r−m
n )−

√
2

π

m∑
k=0

m∑
j=0

1

(2k + 1)!(2j + 1)!

H2k+2j+2(0)

rk+j
n

M (2k+1,θ)
∞

∫
A

z2j+1e−θzdz

= o(r−m
n )−

√
2

π

m∑
`=0

H2`+2(0)

r`n

∑̀
k=0

M
(2k+1,θ)
∞

(2k + 1)!(2`− 2k + 1)!

∫
A

z2`−2k+1e−θzdz,

which completes the proof of (i) and (ii).

Step 3: In this step, we prove (iii). We only prove the case A = (a,∞). The proof
of the case A = [a,∞) is similar. Recall that when θ = 0 and A = (a,∞), bAθ = 1/2. By
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(3.40) and Lemma 2.3 (i), almost surely for all a ≥ 0,

Z
(0,∞)
rn ((a,∞))

r
−1/2
n ern

= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−1/2
n ern

1{Xv(
√
rn)≤

√
K

√
rn logn}

× ern−
√
rnΠXv(

√
rn)

(
1{mins≤rn−√

rn Bs>0}1(a,∞)(Brn−
√
rn)
)

= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−1/2
n ern

1{Xv(
√
rn)≤

√
K

√
rn logn}

× ern−
√
rn√

rn −√
rn

∫ ∞

a

(
φ

(
y −Xv(

√
rn)√

rn −√
rn

)
− φ

(
y +Xv(

√
rn)√

rn −√
rn

))
dy

= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−1/2
n e

√
rn

1{Xv(
√
rn)≤

√
K

√
rn logn}

×

(
Φ

(
a+Xv(

√
rn)√

rn −√
rn

)
− Φ

(
a−Xv(

√
rn)√

rn −√
rn

))
.

Put J := 2m+ 2κ+ 1 > 2m+ Kκ−1
2 . By Lemma 2.7, it holds that

Z
(0,∞)
rn ((a,∞))

r
−1/2
n ern

= o(r−m
n ) +

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

r
−1/2
n e

√
rn

1{Xv(
√
rn)≤

√
K

√
rn logn}

×

(
2φ

(
a

√
rn

) J∑
k=0

1

(2k + 1)!

1

r
(2k+1)/2
n

H2k

(
a

√
rn

)
r(2k+1)/4
n H2k+1

(
Xu(

√
rn)

r
1/4
n

)

+ εm,v,a,n

)
.

where the error term εm,v,a,n satisfies that

r(2m+1)/2
n sup

a>0
sup

v∈N(
√
rn)

|εm,v,a,n| 1{Xv(
√
rn)≤

√
K

√
rn logn}

n→∞−→ 0.

Using the fact that e−t
∑

v∈N(t) 1 is a non-negative martingale, we have

rmn
∑

v∈N(
√
rn)

1{mins≤√
rn Xv(s)>0}

r
−1/2
n e

√
rn

1{Xv(
√
rn)≤

√
K

√
rn logn} |εm,v,a,n|

≤

e−
√
rn

∑
v∈N(

√
rn)

1

 r(2m+1)/2
n sup

a>0
sup

v∈N(
√
rn)

|εm,v,a,n| 1{Xv(
√
rn)≤

√
K

√
rn logn}

n→∞−→ 0.

Therefore, almost surely for all a ≥ 0,

Z
(0,∞)
rn ((a,∞))

r
−1/2
n ern

= o(r−m
n ) + 2

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e
√
rn

1{Xv(
√
rn)≤

√
K

√
rn logn}

× φ

(
a

√
rn

) J∑
k=0

1

(2k + 1)!

1

rkn
H2k

(
a

√
rn

)
r(2k+1)/4
n H2k+1

(
Xu(

√
rn)

r
1/4
n

)
. (3.50)

Similar to the argument leading to (3.45), for each 0 ≤ k ≤ J , applying Lemma 2.5 first,
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then Lemma 2.1 and Lemma 2.3(i) at last, we also have that

∞∑
n=1

rmn Ex

(
sup
a≥0

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e
√
rn

1{Xv(
√
rn)>

√
K

√
rn logn}

× φ

(
a

√
rn

)
1

rkn

∣∣∣∣H2k

(
a

√
rn

)∣∣∣∣× ∣∣∣∣r(2k+1)/4
n H2k+1

(
Xu(

√
rn)

r
1/4
n

)∣∣∣∣ )
.

∞∑
n=1

rmn Ex

( ∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e
√
rn

1{Xv(
√
rn)>

√
K

√
rn logn}

× 1

rkn
Xu(

√
rn)
(
(Xu(

√
rn))

2k
+ rk/2n

))
=

∞∑
n=1

rm−k
n Ex

(
1{mins≤√

rn Xξ(s)>0}1{Xξ(
√
rn)>

√
K

√
rn logn}Xξ(

√
rn)
(
(Xξ(

√
rn))

2k
+ rk/2n

))

= x

∞∑
n=1

rm−k
n Π↑

x

(
1{B√

rn>
√

K
√
rn logn}

((
B√

rn

)2k
+ rk/2n

))
< ∞,

where the last inequality follows from (3.46). Therefore, for 0 ≤ k ≤ J , Px-a.s.,

sup
a≥0

rmn
∑

v∈N(
√
rn)

1{mins≤√
rn Xv(s)>0}

e
√
rn

1{Xv(
√
rn)>

√
K

√
rn logn}

× φ

(
a

√
rn

)
1

rkn

∣∣∣∣H2k

(
a

√
rn

)∣∣∣∣× ∣∣∣∣r(2k+1)/4
n H2k+1

(
Xu(

√
rn)

r
1/4
n

)∣∣∣∣ n→∞−→ 0.

Plugging this back to (3.50), we finally get that

Z
(0,∞)
rn ((a,∞))

r
−1/2
n ern

= o(r−m
n ) + 2

∑
v∈N(

√
rn)

1{mins≤√
rn Xv(s)>0}

e
√
rn

× φ

(
a

√
rn

) J∑
k=0

1

(2k + 1)!

1

rkn
H2k

(
a

√
rn

)
r(2k+1)/4
n H2k+1

(
Xu(

√
rn)

r
1/4
n

)

= o(r−m
n ) + 2φ

(
a

√
rn

) J∑
k=0

1

(2k + 1)!

1

rkn
H2k

(
a

√
rn

)
M

(2k+1,0)√
rn

, (3.51)

where M
(2k+1,0)
t is given in (1.6). Using the same argument as (3.48) and (3.49), also

noting that λ > J = 2m+ 2κ+ 1, Proposition 3.1 (ii) and (3.51) imply that

Z
(0,∞)
rn ((a,∞))

r
−1/2
n ern

= o(r−m
n ) + 2φ

(
a

√
rn

) m∑
k=0

1

(2k + 1)!

1

rkn
H2k

(
a

√
rn

)
M (2k+1,0)

∞ .

The remaining part is similar to the end of Step 2 we omit the details here. The proof of
(iii) is complete.

3.3 From discrete time to continuous time

Lemma 3.5. Let x > 0 and θ ∈ [0,
√
2). For any givenm ∈ N, if κ > 2m+2 and (1.5) holds

for λ > 2m+2κ+2, then, Px-almost surely, simultaneously for all intervals J ⊂ (0,∞), it
holds that

lim inf
n→∞

rmn inf
t∈(rn,rn+1)

Z
(0,∞)
t (J)− Z

(0,∞)
rn (J)

r
−3/2
n e(1−

θ2

2 )rn
≥ 0.
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Proof. Step 1: Define εn :=
√
rn+1 − rn, by the mean value theorem,

√
rnεn=

√
n1/κ

(
(n+ 1)1/κ − n1/κ

) ∃ξ∈[n,n+1]
=

√
n1/κ

κ
ξ(−κ+1)/κ.n(−κ+2)/(2κ) → 0.

(3.52)

For any η < |J |/2, define
Jη := {y ∈ J : dist(y, Jc) ≥ η}.

For any u ∈ N(rn), let Gu be the event that u does not split before rn+1 and that
maxs∈(rn,rn+1) |Xu(s)−Xu(rn)| ≤

√
rnεn. When n is large enough so that ηn :=

√
rnεn <

|J |/2, for u ∈ N(rn), on the event Gu, for t ∈ (rn, rn+1), it must hold that

{Xu(rn) ∈ Jηn
} ⊂ {Xu(s) ∈ J, ∀s ∈ (rn, rn+1)} ⊂ {Xu(t) ∈ J} ∩ {Xu(s) > 0,∀s ∈ (rn, t]}.

Therefore, for t ∈ (rn, rn+1), by the branching property,

rmn
Z

(0,∞)
t (J)

r
−3/2
n e(1−

θ2

2 )rn

=
r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}
∑

v∈N(t):u≤v

1{mins<t−rn Xv(rn+s)>0}1{Xv(t)∈J}

≥ r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1{Xu(rn)∈Jηn}1Gu =: In + IIn. (3.53)

Here In and IIn are given by

In :=
r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1{Xu(rn)∈Jηn}
(
1Gu − Px

(
Gu

∣∣Frn

))
,

IIn :=
r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1{Xu(rn)∈Jηn}Px

(
Gu

∣∣Frn

)
.

We claim the following two limits hold:

sup
J⊂(0,∞)

sup
t∈(rn,rn+1)

|In| = sup
J⊂(0,∞)

|In|
n→∞−→ 0, Px-a.s. (3.54)

and Px-almost surely for all interval J ⊂ (0,∞),

sup
t∈(rn,rn+1)

∣∣∣∣∣IIn − r
m+ 3

2
n

Z
(0,∞)
rn (J)

e(1−
θ2

2 )rn

∣∣∣∣∣ =
∣∣∣∣∣IIn − r

m+ 3
2

n
Z

(0,∞)
rn (J)

e(1−
θ2

2 )rn

∣∣∣∣∣ n→∞−→ 0. (3.55)

If (3.54) and (3.55) hold, then we complete the proof of the Lemma together with (3.53).
Step 2: In this step, we prove (3.55). Define

IIIn :=
r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1{Xu(rn)∈J}Px

(
Gu

∣∣Frn

)
.

We only prove the case J = (a,∞). The other cases are similar. Suppose that a ∈ (k, k+1].
Set An := J \ Jηn

= (a, a + ηn], combining (3.52) and the fact that ε := k−2
2 − m > 0,

we see that there exists N ∈ N such that ηn ≤ N [rm+ε
n ]−1. Recall the notation a

(n)
i and
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Bi(n) in the proof of Lemma 3.3. For each n, suppose that a ∈ (a
(n)
i , a

(n+1)
i ] for some

1 ≤ i ≤ [rm+ε
n ], then we see that An ⊂ (a

(n)
i , a

(n)
i+N ] = Bi+N (n)c \Bi(n)

c, which implies that

sup
a∈(k,k+1]

|IIn − IIIn| ≤ r
m+ 3

2
n sup

a∈(k,k+1]

Z
(0,∞)
rn (An)

e(1−
θ2

2 )rn

≤ sup
0≤i≤[rm+ε

n ]

r
m+ 3

2
n

Z
(0,∞)
rn (Bi+N (n)c \ Bi(n)

c)

e(1−
θ2

2 )rn

≤ 2rmn

sup0≤i≤2[rm+ε
n ]

∣∣∣Z(0,∞)
rn (Bi(n)

c)− Ex

(
Z

(0,∞)
rn (Bi(n)

c)
∣∣∣F√

rn

)∣∣∣
r
−3/2
n e(1−

θ2

2 )rn

+N lim
n→∞

rmn

sup0≤i≤2[rm+ε
n ]−1Ex

(
Z

(0,∞)
rn ([a

(n)
i , a

(n)
i+1])

∣∣∣F√
rn

)
r
−3/2
n e(1−

θ2

2 )rn
.

Combining (3.36), (3.37) and the construction of Ω̂ in (3.38), Px-almost surely, for any
interval J = (a,∞) with a ∈ (k, k + 1],

|IIn − IIIn|
n→∞−→ 0. (3.56)

Taking the intersection over k ∈ N of all the events such that (3.56) holds, we conclude
that Px-almost surely, simultaneously for all intervals J = (a,∞) with a ≥ 0, (3.56) holds.
By the Markov property and the definition of Gu,

Px

(
Gu

∣∣Frn

)
= e−(rn+1−rn)Π−θ

0

(
max

t<rn+1−rn
|Bt| ≤

√
rnεn

)
.

Thus, we get that

sup
J⊂(0,∞)

∣∣∣∣∣IIIn − r
m+ 3

2
n

Z
(0,∞)
rn (J)

e(1−
θ2

2 )rn

∣∣∣∣∣
≤ Z

(0,∞)
rn ((0,∞))

r
−1/2
n e(1−

θ2

2 )rn
· rm+1

n

(
1− e−(rn+1−rn)Π−θ

0

(
max

t<rn+1−rn
|Bt| ≤

√
rnεn

))
. rm+1

n

(
1− e−(rn+1−rn)Π−θ

0

(
max

t<rn+1−rn
|Bt| ≤

√
rnεn

))
, (3.57)

where in the last inequality we used Proposition 3.4 (i) (iii) with m = 0. Note that under
the assumption κ > 2m+ 2,

rm+1
n

(
1− e−(rn+1−rn)Π−θ

0

(
max

t<rn+1−rn
|Bt| ≤

√
rnεn

))
≤ rm+1

n O(rn+1 − rn) + rm+1
n Π−θ

0

(
max

t<rn+1−rn
|Bt| >

√
rnεn

)
≤ rm+1

n O(n(−κ+1)/κ) + rm+1
n Π0

(
max

t<rn+1−rn
|Bt| >

√
rnεn − θ(rn+1 − rn)

)
= O(n−(κ−2−m)/κ) + rm+1

n Π0

(
max
t<1

|Bt| >
√
rn − θ

√
rn+1 − rn

)
= o(1). (3.58)

Hence, (3.55) follows according to (3.56), (3.57) and (3.58).
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Step 3: In this step, we prove (3.54). Noticing that

|In| ≤
r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1{Xu(rn)∈Jηn}1Gc
u

+
r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1{Xu(rn)∈Jηn}Px

(
Gc

u

∣∣Frn

)
≤ r

m+ 3
2

n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1{Xu(rn)>0}
(
1Gc

u
− Px

(
Gc

u

∣∣Frn

))
+ 2

r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}Px

(
Gc

u

∣∣Frn

)
=: I(1)n + 2I(2)n .

Therefore, we conclude that

sup
J⊂(0,∞)

sup
t∈(rn,rn+1)

|In| ≤ I(1)n + 2I(2)n . (3.59)

On one hand, combining Proposition 3.4 (with m = 0), (3.58) and the fact that b(0,∞)
θ ≥ 1

2 ,
we see that

I(2)n ≤ r
m+1+b

(0,∞)
θ

n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}Px

(
Gc

u

∣∣Frn

)
=

Z
(0,∞)
rn ((0,∞))

r
−b

(0,∞)
θ

n e(1−
θ2

2 )rn

× rm+1
n

(
1− e−(rn+1−rn)Π−θ

0

(
max

t<rn+1−rn
|Bt| ≤

√
rnεn

))
n→∞−→ 0, Px-a.s. (3.60)

On the other hand, since, given Frn , {Gu : u ∈ N(rn)} are independent, we have

Ex

(∣∣∣I(1)n

∣∣∣2 ∣∣Frn

)
=

r2m+3
n

e2(1−
θ2

2 )rn

×
∑

u∈N(rn)

1{mins≤rn Xu(s)>0}1{Xu(rn)∈(0,∞)}Ex

((
1Gu − Px

(
Gu

∣∣Fn

))2 ∣∣Frn

)
≤ 4

r2m+3
n

e2(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0}1{Xu(rn)∈(0,∞)}

=
4r

2m+ 5
2

n

e(1−
θ2

2 )rn
× Z

(0,∞)
rn ((0,∞))

r
−1/2
n e(1−

θ2

2 )rn
.

Now taking expectation with respect to Px, by Lemma 2.1 and Lemma 2.4(i)(ii), for any
ε > 0,

∞∑
n=2

Px

(∣∣∣I(1)n

∣∣∣ > ε
)
≤ 1

ε2

∞∑
n=2

Ex

(∣∣∣I(1)n

∣∣∣2) .
∞∑

n=2

r
2m+ 5

2
n

e(1−
θ2

2 )rn

Ex

(
Z

(0,∞)
rn ((0,∞))

)
r
−1/2
n e(1−

θ2

2 )rn

=

∞∑
n=2

r
2m+ 5

2
n

e(1−
θ2

2 )rn

ernPx (mins≤rn Xξ(s) > 0)

r
−1/2
n e(1−

θ2

2 )rn
.

∞∑
n=1

r
2m+ 5

2
n

e(1−
θ2

2 )rn
< ∞, (3.61)

Thus, (3.54) follows directly by (3.59), (3.60) and (3.61). This completes the proof of the
lemma.
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Lemma 3.6. Let x > 0 and θ ∈ [0,
√
2). For any m ∈ N, suppose that κ > 2m + 2 and

(1.5) holds with λ > 2m+ 2κ+ 2, then Px-almost surely, simultaneously for all intervals
A ⊂ (0,∞),

rmn sup
t∈(rn,rn+1)

∣∣∣∣∣Z(0,∞)
t (A)− Z

(0,∞)
rn (A)

r
−3/2
n e(1−

θ2

2 )rn

∣∣∣∣∣ n→∞−→ 0.

Proof. Suppose x > 0,m ∈ N, and that κ > 2m+ 2 and (1.5) holds with λ > 2m+ 2κ+ 2.
Fix θ ∈ [0,

√
2). Note that if

lim inf
n→∞

xn ≥ 0, lim inf
n→∞

yn ≥ 0, lim inf
n→∞

zn ≥ 0 and lim sup
n→∞

(xn + yn + zn) ≤ 0,

then limn→∞ xn = limn→∞ yn = limn→∞ zn = 0. Applying Lemma 3.5 with J = (a, b),
[b,∞) and (0, a], we see that to prove Lemma 3.6, only need to prove that

lim sup
n→∞

rmn sup
t∈(rn,rn+1)

Z
(0,∞)
t ((0,∞))− Z

(0,∞)
rn ((0,∞))

r
−3/2
n e(1−

θ2

2 )rn
≤ 0. a.s.

For any t ∈ (rn, rn+1), by the branching property, we see that

rmn sup
t∈(rn,rn+1)

Z
(0,∞)
t ((0,∞))− Z

(0,∞)
rn ((0,∞))

r
−3/2
n e(1−

θ2

2 )rn

≤ r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
} sup
t∈(rn,rn+1)

( ∑
v∈N(t):u≤v

1− 1
)
. (3.62)

To drop the “sup” above, we modify the branching particle system such that when a
particle dies in (rn, rn+1) and it splits into L offspring, we modify the number of the
offspring with L + 1. For t ∈ (rn, rn+1), we use Ñ(t) to denote the set of the particles
alive at time t in the modified process. It is obvious that the mean of the number in the
modified process is equal to

∑∞
k=0(k + 1)pk = 3 and that for each u ∈ N(rn),

sup
t∈(rn,rn+1)

( ∑
v∈N(t):u≤v

1− 1
)
≤ sup

t∈(rn,rn+1)

( ∑
v∈Ñ(t):u≤v

1− 1
)
=
( ∑

v∈Ñ(rn+1):u≤v

1
)
− 1.

Define

Z̃n+1 :=
r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
} ∑
v∈Ñ(rn+1):u≤v

1.

We claim that Px almost surely,

Z̃n+1 − Ex

(
Z̃n+1

∣∣Frn

)
→ 0. (3.63)

If the claim is true, then

Z̃n+1 − Ex

(
Z̃n+1

∣∣Frn

)
= Z̃n+1 − e2(rn+1−rn)rmn

Z
(0,∞)
rn ((0,∞))

r
−3/2
n e(1−

θ2

2 )rn
→ 0.

Using this and (3.62), we get

rmn sup
t∈(rn,rn+1)

Z
(0,∞)
t ((0,∞))− Z

(0,∞)
rn ((0,∞))

r
−3/2
n e(1−

θ2

2 )rn
≤ Z̃n+1 − r

m+ 3
2

n
Z

(0,∞)
rn ((0,∞))

e(1−
θ2

2 )rn

= Z̃n+1 − Ex

(
Z̃n+1

∣∣Frn

)
+ rm+1

n (e2(rn+1−rn) − 1)
Z

(0,∞)
rn ((0,∞))

r
−1/2
n e(1−

θ2

2 )rn
→ 0,
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where for the last limit, we used Proposition 3.4 (i) (iii) with m = 0 and the fact that
rm+1
n (e2(rn+1−rn) − 1) = rm+1

n O(rn+1 − rn) = o(1) under the assumption κ > 2m+2. Thus
the assertion of the lemma is valid.

Now we prove the claim (3.63). We consider another branching Brownian motion
with underlying motion according to a standard Brownian motion with drift −θ, with
branching rate equal to 1 and with offspring distribution according to Px(L̃ = k+1) = pk
for all k ∈ N, then we may define another change-of-measure

dP̃x

dPx

∣∣∣∣
F̃t

:=

∑
u∈Ñ(t) 1

e2t
,

then a similar formula as Lemma 2.1 can be established:
For any t > 0 and u ∈ Ñ(t), let Γ(u, t) be a non-negative F̃t-measurable random

variable. Then

Ex

( ∑
u∈Ñ(t)

Γ(u, t)
)
= e2tẼx (Γ(ξt, t)) . (3.64)

For w ∈ Ñ(t) with t ∈ (rn, rn+1), let d̃w, Õw denote the death time and the number of
offspring of w respectively. For v ∈ Ñ(rn+1), define B̃n,v to be the event that, for all

w < v with d̃w ∈ (rn, rn+1), it holds that Õw ≤ ec0n, where 0 < c0 < 1− θ2

2 is fixed. Define

Z̃B
n+1 :=

r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
} ∑
v∈Ñ(rn+1):u≤v

1B̃n,v
.

Now for v ∈ Ñ(rn+1 − rn), D̃n,v denotes the event that, for all w < v, it holds that

Õw ≤ ec0n. Let d̃i be the i-th splitting time of the spine and Õi be the number of children
produced by the spine at time d̃i. Define D̃n,ξrn+1−rn

to be the event that, for all i with

d̃i < rn+1 − rn, it holds that Õi ≤ ec0n. Then by the branching property, the Markov
property and (3.64), we have

Ex

(∣∣∣Z̃n+1 − Z̃B
n+1

∣∣∣ ∣∣Frn

)
=

r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
}EXu(rn)

( ∑
v∈Ñ(rn+1−rn)

1D̃c
n,v

)

= e2(rn+1−rn)
r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
}ẼXu(rn)

(
1D̃c

n,ξrn+1−rn

)
.

Noticing that (1.5) implies Ẽx(log
1+λ
+ Õ1) = Ẽ0(log

1+λ
+ Õ1) < ∞, we obtain

Ex

(∣∣∣Z̃n+1 − Z̃B
n+1

∣∣∣ ∣∣Frn

)
.

r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
}ẼXu(rn)

( ∑
i:d̃i<rn+1−rn

1{Õi>ec0n}

)

.
r
m+ 3

2
n

e(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
} rn+1 − rn

n1+λ
.

Now taking expectation with respect to Px, using Lemma 2.1 and Lemma 2.4(i) (ii), we
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get that

Ex

(∣∣∣Z̃n+1 − Z̃B
n+1

∣∣∣) .
rn+1 − rn

n1+λ

r
m+ 3

2
n

e(1−
θ2

2 )rn
ernPx

(
min
s≤rn

Xξ(s) > 0

)
. xeθx

rn+1 − rn
n1+λ

rm+1
n . (3.65)

Similarly, by the branching property and the Markov property,

Ex

(∣∣∣Z̃B
n+1 − Ex

(
Z̃B
n+1

∣∣Frn

)∣∣∣2 ∣∣Frn

)
=

r2m+3
n

e2(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
}

× EXu(rn)

(( ∑
v∈Ñ(rn+1−rn)

1D̃n,v
− EXu(rn)

( ∑
v∈Ñ(rn+1−rn)

1D̃n,v

))2)

≤ r2m+3
n

e2(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
}EXu(rn)

(( ∑
v∈Ñ(rn+1−rn)

1D̃n,v

)2)
. (3.66)

By (3.64), we see that

EXu(rn)

(( ∑
v∈Ñ(rn+1−rn)

1D̃n,v

)2)
= e2(rn+1−rn)ẼXu(rn)

(
1D̃n,ξrn+1−rn

∑
v∈Ñ(rn+1−rn)

1D̃n,v

)
. ẼXu(rn)

(
1D̃n,ξrn+1−rn

∑
v∈Ñ(rn+1−rn)

1
)
.

On the set D̃n,ξrn+1−rn
, we have

ẼXu(rn)

( ∑
v∈Ñ(rn+1−rn)

1
∣∣d̃i, Õi : i ≥ 1

)
=

∑
i:d̃i<rn+1−rn

(
Õi − 1

)
e2(rn+1−rn−di)

. ec0n
∑

i:d̃i<rn+1−rn

1,

which implies that

ẼXu(rn)

(
1D̃n,ξrn+1−rn

∑
v∈Ñ(rn+1−rn)

1
)
. ec0nẼXu(rn)

( ∑
i:d̃i<rn+1−rn

1
)
. ec0n(rn+1 − rn).

Therefore, plugging this upper bound back to (3.66), we have

Ex

(∣∣∣Z̃B
n+1 − Ex

(
Z̃B
n+1

∣∣Frn

)∣∣∣2 ∣∣Frn

)
.

r2m+3
n ec0n(rn+1 − rn)

e2(1−
θ2

2 )rn

∑
u∈N(rn)

1{mins≤rn Xu(s)>0
}.

Taking expectation with respect to Px, using Lemma 2.1 and Lemma 2.4(i), we conclude
that

Ex

(∣∣∣Z̃B
n+1 − Ex

(
Z̃B
n+1

∣∣Frn

)∣∣∣2) .
r2m+3
n ec0n(rn+1 − rn)

e2(1−
θ2

2 )rn
ernEx

(
1{mins≤rn Xξ(s)>0

})
.

r2m+3
n ec0n(rn+1 − rn)

e(1−
θ2

2 )rn
. (3.67)

First using (3.14) with X = Z̃n+1, Y = Z̃B
n+1 and ` = 2, and then (3.65) and (3.67), we
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get that

∞∑
n=1

Ex

(∣∣∣Z̃n+1 − Ex

(
Z̃n+1

∣∣Frn

)∣∣∣)
≤ 2

∞∑
n=1

Ex

(∣∣∣Z̃n+1 − Z̃B
n+1

∣∣∣)+ ∞∑
n=1

Ex

(∣∣∣Z̃B
n+1 − Ex

(
Z̃B
n+1

∣∣Frn

)∣∣∣2)1/2

.
∞∑

n=1

(
rn+1 − rn

n1+λ
rm+1
n +

(
r2m+3
n ec0n(rn+1 − rn)

e(1−
θ2

2 )rn

)1/2
)
,

which is finite since for λ > 0 and κ > 2m+ 2, (rn+1 − rn)r
m+1
n = O(n(m−κ+2)/κ) = o(1)

and
∑∞

n=1
1

n1+λ < ∞. Then we finished the proof of the claim (3.63).

Proof of Theorem 1.1. For any λ > 6m + 6, we can find an appropriate κ satisfying
the conditions of Proposition 3.4 and Lemma 3.6. For instance, we can take κ :=

2m+ 2 + (λ− 6m− 6)/4 > 2m+ 2, then

λ = 4(κ− 2m− 2) + 6m+ 6 > 6m+ 6 + 2(κ− 2m− 2) = 2m+ 2κ+ 2.

For any ` ∈ [0,m], since κ > 2m+ 2, we have

r`n+1 − r`n =
`

κ

∫ n+1

n

y−(κ−`)/κdy ≤ m

κ
n−(κ−m)/κ = o(r−m

n ). (3.68)

For t ∈ (rn, rn+1), by Lemma 3.6 and (3.68), we get that for any a ≥ 0 and t ∈ (rn, rn+1),

Z
(0,∞)
t ((a,∞))

t−3/2e(1−
θ2

2 )t
=

r
−3/2
n

t−3/2
· e

(1− θ2

2 )rn

e(1−
θ2

2 )t
· Z

(0,∞)
t ((a,∞))

r
−3/2
n e(1−

θ2

2 )rn

=
(
1 + o(r−m

n )
)
·

(
o
(
r−m
n

)
+

Z
(0,∞)
rn ((a,∞))

r
−3/2
n e(1−

θ2

2 )rn

)

= o(r−m
n ) +

Z
(0,∞)
rn ((a,∞))

r
−3/2
n e(1−

θ2

2 )rn
.

By (3.68), we have

rmn sup
t∈(rn,rn+1)

∣∣∣∣ 1t` − 1

r`n

∣∣∣∣ = o(1).

Combining the above with Proposition 3.4(i), we get the assertion of Theorem 1.1.

Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1 and we omit the
details.
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