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Spatial Quantile Multiple Regression Using the
Asymmetric Laplace Process

Kristian Lum∗ and Alan E. Gelfand†

Abstract. We consider quantile multiple regression through conditional quantile
models, i.e. each quantile is modeled separately. We work in the context of
spatially referenced data and extend the asymmetric Laplace model for quantile
regression to a spatial process, the asymmetric Laplace process (ALP) for quantile
regression with spatially dependent errors. By taking advantage of a convenient
conditionally Gaussian representation of the asymmetric Laplace distribution, we
are able to straightforwardly incorporate spatial dependence in this process. We
develop the properties of this process under several specifications, each of which
induces different smoothness and covariance behavior at the extreme quantiles.

We demonstrate the advantages that may be gained by incorporating spatial
dependence into this conditional quantile model by applying it to a data set of log
selling prices of homes in Baton Rouge, LA, given characteristics of each house.
We also introduce the asymmetric Laplace predictive process (ALPP) which ac-
commodates large data sets, and apply it to a data set of birth weights given
maternal covariates for several thousand births in North Carolina in 2000. By
modeling the spatial structure in the data, we are able to show, using a check loss
function, improved performance on each of the data sets for each of the quantiles
at which the model was fit.
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1 Introduction

Quantile multiple regression supplements multiple regression for the mean by supplying
information about the relationship between the response and the covariates at the tails
of the response distribution. Here we focus on conditional quantile modeling since
many applications areas are concerned with the changing effects of the covariates on
the outcome across the quantiles of the distribution. Furthermore, we have geo-coded
locations for the observations and so, in addition, we seek to account for anticipated
spatial dependence.

To date, little work has been done to define a conditional quantile regression model
that incorporates spatial dependence. The contribution of our work is a full development
of a conditional quantile process model that incorporates spatial dependence through the
spatial asymmetric Laplace process (ALP). The ALP relaxes the traditional assumption
of iid errors by allowing for residual dependence in each quantile regression via a latent
Gaussian process. The ALP allows closed form covariance calculation. In fact, we
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consider various versions of this process to allow for differing behavior as the extreme
quantiles are approached and we derive the covariance structure implied by each of these
models. Through the ALP, we are able to obtain global quantile regression coefficients.
We can also provide spatial interpolation of a quantile under this process model. We
fit a Bayesian hierarchical model using a straightforward Markov Chain Monte Carlo
(MCMC). The estimation algorithm requires minimal tuning because of the conditional
Gaussian representation of the asymmetric Laplace distribution for the errors under the
model. As a result, we achieve a fully model-based approach enabling full inference
regarding regression coefficients, avoiding possibly inappropriate asymptotics. Finally,
we extend this process to accommodate large data sets using a reduced rank approach.

The format of this paper is as follows. In Section 2, we offer a brief literature re-
view, discussing both the conditional and joint modeling paths for quantile regression
and explaining where the ALP fits in. In Section 3, we briefly review the asymmetric
Laplace distribution and the properties that make it ideal for use as the error term of
a quantile regression. In Section 4, we introduce the asymmetric Laplace process along
with several options for defining it. In Section 5, we formalize our quantile regression
model, discuss model fitting, prior specifications, and interpolation of the quantile re-
gression. In Section 6, we demonstrate the advantages of having a spatial component in
the quantile regression for a data set of the selling price of homes in Baton Rouge, LA.
In Section 7, we introduce a modification to the asymmetric Laplace process that makes
it suitable for use with large data sets, which we call the asymmetric Laplace predic-
tive process. Section 8 employs this modified process for a data set of birth weights in
Durham County, North Carolina. We conclude with Section 9, which summarizes the
work presented and offers some future directions.

2 Relevant Literature

As alluded to above, there are two paths for developing quantile regressions. The first
approach, which essentially follows the original incarnation of this idea as presented
in Koenker and Bassett (1978), offers a regression model for each of the quantiles of
interest separately. Typically, inference proceeds by minimizing check loss or assuming
an asymmetric Laplace error term. This approach, which we will call the “conditional
quantile model”, specifies a different model for each quantile of the outcome distribution.

The conditional quantile models may be further subdivided. One category specifies
the conditional quantile linearly in the covariates and then introduces an asymmetric
Laplace error distribution or minimizes the check loss function. Examples of conditional
quantile models appear in Yu and Moyeed (2001), which specifies a Bayesian quantile
regression model with iid asymmetric Laplace error terms and proves the propriety of
the posterior of the regression coefficients in this framework under an improper prior.
Tsionas (2003), Reed and Yu (2009), and Kozumi and Kobayashi (2011) present a Gibbs
sampler for a Bayesian quantile regression model. The efficiency of the method in Reed
and Yu (2009) and Kozumi and Kobayashi (2011) is due to its use of the conditionally
Gaussian representation of the asymmetric Laplace distribution. Li et al. (2010) also
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uses this representation and considers priors that correspond to lasso, elastic net, and
group lasso penalties. A non-Bayesian example is Cai and Xu (2008), which is linear
in the quantile at each of several time points across which regression coefficients are
smoothed. Other models relax the parametric assumption on the error term, yet retain
linearity in the form of the conditional quantile. For example, Reich et al. (2010)
introduces a mixture model, where the mixing components are themselves mixtures of
two normal distributions which have mixing weights set to force zero to be the quantile
of interest. Kottas and Krnjajić (2009) introduces two semiparametric models for the
error distribution of a quantile regression. Recent work of Hallin et al. (2009) introduces
conditional spatial quantile regression that is nonparametric, focusing on asymptotic
behavior using assumptions associated with time series asymptotics.

The second category of conditional quantile models allows for non-linearity in the
quantile yet retains the asymmetric Laplace or check loss assumption. Koenker et al.
(1994), Yu (2002), and Thompson et al. (2010), for example, specify the form of the
conditional quantile as a spline. Other models relax both the assumptions of linearity
in the conditional quantile and the parametric form of the error term. Chaudhuri et al.
(1997), Honda (2004b), and Honda (2004a) fall into this category. Accessible reviews
and explanations of conditional quantile regression can be found in Buchinsky (1998),
Koenker and Hallock (2001), and Yu et al. (2003).

The second approach, which we call the “joint quantile model”, specifies an appro-
priate joint model for all quantiles. The roots of this approach can be traced back to
density regression, as in Dunson et al. (2007) and Dunson (2007). Tokdar and Kadane
(2011) introduces a model for joint quantile regression with a single covariate having
finite support. Quantiles associated with covariate levels between the minimum and
maximum values of its support are convex combinations of the conditional CDF at
each of these boundary points. Dunson and Taylor (2005) introduces an approximate
likelihood method for quantile inference while Taddy and Kottas (2010) presents a
non-parametric model that jointly specifies the distribution of the covariates and the
response. Quantile inference is derived from the quantiles of the conditional distribution
of the response, bypassing the need for quantile regression coefficients. Recent work of
Reich et al. (2011) is similar in spirit to our proposed ALP. Reich et al. (2011) develops
a spatial joint quantile model that incorporates spatial dependence through spatially
varying regression coefficients, which are expressed as a weighted sum of Bernstein basis
polynomials where the weights are constrained spatial Gaussian processes.

In general, by modeling the whole conditional outcome distribution nonparametri-
cally, quantile regression coefficients are not obtained. However, in many applications,
researchers are specifically interested in the varying effect of the covariates across quan-
tiles, so a method that can quantify the relationship between the covariates and the
outcome at each of the quantiles separately would be more suitable. For instance,
Miranda et al. (2009) looks at the changing relationships between the children’s per-
formance in school and covariates such as lead exposure and parental education across
quantiles.

Finally, a primary advantage of the second approach is that it precludes the pos-
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sibility of “crossing quantiles”, i.e., it precludes qp(Y |x) > qp′(Y |x) for p < p′, where
qp(Y |x) is the pth conditional quantile of Y given covariates x. This can occur in meth-
ods that estimate and infer about quantiles separately. However, below we show that,
under our conditional quantile model, if p < p′, then qp′(Y |x) is stochastically larger
than qp(Y |x). Disadvantages of some of these joint methods include somewhat restric-
tive assumptions on covariates, such as bounded support, the infeasibility of handling
more than one or two covariates, and computation which is both approximate and very
intensive.

3 The asymmetric Laplace distribution

We introduce the asymmetric Laplace distribution as an error distribution for condi-
tional quantile regression models. It has probability density function

fp(εp|µ, τ) = τp(1− p) exp{−(1− p)τ |εp − µ|}1[εp < µ] +
τp(1− p) exp{−pτ |εp − µ|}1[εp ≥ µ]

which can be rewritten as fp(εp|µ, τ) = τp(1− p) exp{−τρp(εp−µ)}, where ρp(x) =
−x(1− p)1[x < 0] +xp1[x ≥ 0] is the check loss function (Koenker and Bassett (1978)).
1[×] is the indicator function, which takes the value one if the argument is true and zero
otherwise. For a dataset x = {x1, x2, ..., xn}, finding argminµ

∑n
i=1 ρp(xi − µ) returns

the pth empirical quantile. We will denote this distribution by AL(p, µ, τ), where we
will typically set µ = 0 so that Pr(εp < 0) = p.

The CDF readily enables quantiles and takes the form

Fp(εp|µ, τ) = p exp{−(1− p)τ |εp − µ|}1[εp < µ] +
1− (1− p) exp{−pτ |εp − µ|}1[εp ≥ µ].

Just as minimizing L2 loss is associated with normal errors, minimizing check loss
corresponds to assuming asymmetric Laplace errors.

The asymmetric Laplace distribution as the error term achieves stochastic ordering
for quantiles across p. If we let εp ∼ AL(p, 0, τ) and εp′ ∼ AL(p′, 0, τ) for p < p′, then
it is straightforward to show that εp is stochastically less than εp′ , i.e εp � εp′ . Hence,
for fixed Y with two quantile models, Y = µp + εp and Y = µp′ + εp′ , εp � εp′ , this
implies that the pth quantile prediction, µp, is stochastically larger than than the p′th
quantile prediction, µp′ . Inference is still done separately for each p. However, the hard
constraint of the joint quantile model is replaced by a soft stochastic order constraint.
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3.1 An alternative representation of the asymmetric Laplace distri-
bution

Kuzobowski and Podgorski (2000) note that the following equations,

εp =

√
2ξ

τp(1− p)
Z +

1− 2p
p(1− p)

ξ (1)

Z ∼ N(0, 1) (2)
ξ ∼ Ga(1, τ), (3)

provide a representation of the asymmetric Laplace distribution, where Ga(a, b) is the
gamma distribution with mean a/b. That is, we can express εp, which is distributed
as AL(p, 0, τ), as a mixture of a standard normal random variable, Z, and an expo-
nential random variable, ξ (with mean 1/τ). The utility of this representation is that,
conditional on ξ ∼ Ga(1, τ), εp|ξ ∼ N

(
1−2p
p(1−p)ξ,

2ξ
τp(1−p)

)
is normal, leaving all of the

convenient properties of the normal distribution at our disposal. The equivalence in
distribution of the mixture in Equations (1) - (3) and the asymmetric Laplace distri-
bution is derived by matching the moment generating functions. In fact, marginally,

E[εp] = 1
τ

1−2p
p(1−p) and V ar[εp] = 1

τ2 ( 2
p(1−p) + ap) where ap =

(
1−2p
p(1−p)

)2

.

The AL distribution, as an error specification, imposes strong assumptions on the
skewness as a function of p. Yu and Moyeed (2001) presents a simple simulation to show
that the posterior means obtained by assuming an asymmetric Laplace error at several
values of p serve as reasonable pth quantile point estimates. In appendix C, we present
encouraging results from a brief simulation investigation regarding its performance with
respect to nominal coverage of credible intervals.

4 The asymmetric Laplace process (ALP)

In order to incorporate spatial structure in the model, we introduce the asymmetric
Laplace process. The mixture representation of the asymmetric Laplace distribution
suggests a straightforward way to create a spatial process model for quantiles. By
replacing the univariate standard normal Z of Section 3.1 with a mean zero, variance
one Gaussian process (GP), Z(s), we create a process model in which each location has
an asymmetric Laplace marginal distribution, provided that ξ(s) is independent of Z(s)
and is marginally exponentially distributed. Thus, our spatial quantile process model
can be written as

εp(s) =

√
2ξ(s)

τp(1− p)
Z(s) +

1− 2p
p(1− p)

ξ(s)

Z(s) ∼ GP (0, ρZ(s, s′;θ)),
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where ρZ(s, s′;θ) is a valid correlation function and we address a joint specification of
ξ(s) below.1 Because ξ(s) is marginally exponentially distributed with rate τ , and Z(s)
is marginally a standard normal, and because ξ(s) is conditionally independent of Z(s),
at any given location, s0, εp(s0)|ξ(s0) ∼ N

(
1−2p
p(1−p)ξ(s0), 2ξ(s0)

τp(1−p)

)
, i.e., an AL(p, 0, τ)

marginal of ξ(s0). So, the marginals of this process are distributed asymmetric Laplace.
We next turn to specification for ξ(s). Regardless of this specification, the GP model for
Z(s) ensures spatial dependence for the εp(s), as we illuminate in the next subsection.

4.1 Modeling ξ(s)

Here, we discuss three modeling options for the ξ(s): (i) a common choice, (ii) an iid
model, and (iii) a spatial model. We present cases (i) and (iii) in order to illustrate a
full range of spatial quantile process models in terms of the behavior of the correlation
of the process as the extreme quantiles are approached. Because (ii) should be adequate
in practice and offers computational simplicity and good behavior when fitting, we use
only iid ξ’s in the ensuing sections.

(i) Common ξ(s)

First consider the simplest case in which ξ(s) ∼ ξ = Exp(rate = τ) is common for
all locations s ∈ S. Through a simple iterated expectation argument, we find that, if
Cor[Z(s), Z(s′)] = ρZ(s, s′), then

Cov[εp(s), εp(s′)] =
1
τ2

[
2ρZ(s, s′)
p(1− p)

+ ap

]
.

From Section 2.1, we immediately obtain Cor[εp(s), εp(s′)] = ρZ(s,s′)+app(1−p)/2
1+app(1−p)/2 >

ρZ(s, s′) since app(1 − p) > 0, as expected. That is, a shared shift and scale fac-
tor, ξ, results in a higher correlation for the εp(s) process than for the original Z(s)
process. Equality occurs only at p = .5. Further, since ap → ∞ as p → 0 or 1,
Cor[εp(s), εp(s′)] → 1 as p → 0 or 1. Increasing correlation as we move toward the
extreme quantiles may be undesirable. Finally, this common ξ produces mean square
continuous surface realizations for εp(s) if Z(s) is mean square continuous.

(ii) iid ξ(s)

At the other extreme, consider the case in which the ξ(s) are independent and identi-
cally distributed exponential variables. We find that, if Cor[Z(s), Z(s′)] = ρZ(s, s′), the
εp process covariance is Cov[εp(s), εp(s′)] = 1

τ2

(
π ρZ(s,s′)

2p(1−p)

)
. We see that the covariance

of the quantile process model is a scaled version of that of the Gaussian process. The
resulting correlation is

1In the above, since we specify a model for each p, we introduce a Zp(s) and ξp(s) for each p. In
the sequel, we suppress the subscript p’s.
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Cor[εp(s), εp(s′)] = ρZ(s, s′)
π
2 p(1− p)

1− 2p+ 2p2
.

The panels in Figure 1 show the correlation of εp over values of ρZ for the iid mixture
case. For the extreme quantiles, even for highly correlated Z, the correlation of εp is very
weak. The heat maps of Figure 2 show the correlation and covariance of the error process
on a grid of the possible values of p and ρZ . We see that high correlation in the quantile
process model only occurs for quantiles near the median combined with high correlation
in the Gaussian process. We see how the original covariance changes according to the
scale factor, which is a function of p. We also see that, as p→ 1 or 0, Cor[εp(s), εp(s′)]→
0. Thus, we find that introducing iid latent variables forces discontinuities in the process.
In fact, since ξ(s) is everywhere discontinuous, the induced εp(s) process is as well.

Figure 1: The correlation of εp(s) versus the correlation of Z(s) for the iid ξ case,
shown by the black line. The gray line, provided for reference, shows a 45 degree line.

(iii) Spatial ξ(s)

Location-specific mixing variables that are spatially structured can be introduced
through a CDF (or copula) transformation. That is, let ξ(s) = − log(Φ(Vξ(s)))

τ =
F−1
τ (Φ(Vξ(s))) where F−1

τ (·) is the inverse CDF of the exponential distribution with
rate parameter τ , Φ is the standard normal CDF, and Vξ(s) is a Gaussian process with
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Figure 2: The correlation (top) and log covariance (bottom) of the ALP across p and
ρZ for iid ξ.

spatial covariance function ρV . Monte Carlo estimates of the correlation of the result-
ing process at various values of ρξ and ρZ have shown that the correlation of the Z(s)
process does not have very much effect on the resulting correlation at the extreme quan-
tiles, while the correlation structure of εp(s) is more strongly dictated by ρZ around the
median. The model with spatial ξ’s is computationally demanding to fit; in the sequel
we use only the case of iid ξ’s.
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5 The spatial quantile regression model

A general form for a spatial quantile regression is given by Y (s)− µp(s) = εp(s), where
εp(s) must satisfy the constraint that Pr(εp(s) ≤ 0) = p. Apart from including spatially
referenced covariates in µp(s) we can incorporate spatial dependence in the εp(s). Hence,
we arrive at our quantile regression model:

Y (s) = µp(s) + εp(s)

εp(s) =

√
2ξ(s)

τp(1− p)
Z(s) +

1− 2p
p(1− p)

ξ(s)

with say µp(s) = xT (s)βp and εp(s) defined as in Section 4.

Why not let µp(s) = xT (s)βp + wp(s) with wp(s) a spatial Gaussian process? If so,
then xT (s)βp + wp(s) would correspond to the pth conditional quantile of Y (s) rather
than xT (s)βp, thus losing interpretability of βp. By embedding the spatial component
within εp(s) in the ALP, we retain the interpretation of βp as a global quantile regression
coefficient.

5.1 Comparison to spatial mean regression

The form in which this quantile model is written invites comparison to spatial mean
regression. Typically, in spatial mean regression, we write Y (s) = µm(s) + εm(s) with,
say, µm(s) = xT (s)βm and the error process as εm(s) = wm(s) + δm(s), where the m
subscript denotes mean regression. In this setting, wm(s) is a GP realization and the
δm(s) are a pure error (white noise) realization. Instead, for our quantile process we

write εp(s) =
√

2ξ(s)
τp(1−p)Z(s) + 1−2p

p(1−p)ξ(s) where Z(s) is a GP realization and ξ(s) is,
say, a pure error realization. Then, the spatial component of εp(s) depends upon ξ(s)
and, in fact, is everywhere discontinuous. However, marginal spatial dependence in
the εp(s)’s is retained, according to the previous subsection. Also, in working with the
ALP, we condition on and marginalize over the iid ξ(s). For spatial mean regression,
we condition on and marginalize over the wm(s) (see, e.g., Banerjee et al., 2004).

In the case of spatial mean regression, we may interpret the wm(s) as a local spatial
adjustment to the mean. That is, E[Y (s)|wm(s)] = xT (s)βm + wm(s) will be a better
estimator in the mean squared error sense than the marginal expectation, E[Y (s)] =
xT (s)βm. This argument does not extend to quantile processes or the asymmetric
Laplace distribution as clarified above. However, suppose we enrich Z(s) such that
Z(s) =

√
1− αw(s)+

√
αδ(s) where w(s) is a mean 0 variance 1 GP, δ(s) is a pure error

process, and α ∈ [0, 1]. Evidently, the parameter α dictates what proportion of the
variance of Z(s) is due to the spatial component. Then, Z(s) ∼ N(0, 1) and we can pull
apart a spatial adjustment to the marginal quantile. That is, now a spatially adjusted
conditional quantile using the ALP is qp(Y (s)|w(s)) = xT (s)βp+w(s)

√
π

2τ2p(1−p) , which

is anticipated to be better in terms of check loss than the marginal quantile qp(Y (s)).
Notice that, for each p, the qp(Y (s)|w(s)) surface will be smooth if xT (s) and w(s)
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are. In summary, to specify a quantile model that can produce spatial adjustments
for more accurate local quantile regressions, we embed the spatial structure within the
error process and still yield a marginal (integrating over Z(s)) quantile regression.

5.2 Model fitting

Reed and Yu (2009) develops a Gibbs sampler for non-spatial quantile regression with a
model that is a special case of the ALP, the case in which Z(s) iid∼ N(0, 1). They derive
full conditional distributions for each of the parameters, including the latent exponential
vector of ξis. Similarly, we use the mixture representation of the asymmetric Laplace
via the ALP, as the error term of a regression. We adopt the iid assumption for the
ξ(s) and place the following (conjugate, when possible) priors on all other parameters:
ξ(s) iid∼ Exp(τ), τ ∼ Ga(aτ , bτ ), and βp ∼ Nr(µβ ,Σβ). We typically set µβ = 0 and
Σβ = σ2

βI with σ2
β large.

For w(s), we choose the exponential correlation function with decay parameter φ.
To achieve well behaved MCMC model fitting, we use a discrete prior for the possible
values of φ chosen in such a way that φ may only take values that are within a plausible
range, determined by the scale for the data locations. That is, for example, we do not
allow the effective range of the process implied by a value of φ to go beyond the range of
the data observed. The required full conditional distributions are provided in Appendix
A.

5.3 The hyperparameters in the prior for τ

In practice, we have to specify the hyperparameters of the prior for τ , Ga(aτ , bτ ). As
we have seen, V ar[εp(s)] = 1

τ2

(
2

p(1−p) + ap

)
, a function of both τ and p. In fact, given

τ , the marginal process variance is unbounded as p→ 0 or 1. Hence, one may prefer to
specify a prior such that V ar[εp(s)] is the same at all quantiles and then translate this
to the implied prior for τ .

Let V ar[εp(s)] = 1
κ2 . Then, κ = τ√

2
p(1−p) +ap

. If we specify a gamma prior on κ

such that κ ∼ Ga(a, bκ), by the scalability of Gamma distribution, this implies that τ ∼
Ga
(
a, bτ = bκ

√
2

p(1−p) + ap

)
. In this manner, we have provided a way to automatically

adjust the prior on τ to imply a constant process variance across p and also to retain
conjugacy for this transformed prior.

5.4 Spatial quantile interpolation

We seek to interpolate the pth conditional quantile of Y (s0) at a new location s0.
The goal here is to come up with a conditional expression for qp(Y (s0)| . . .) such that
Pr (Y (s0) ≤ qp(Y (s0)| . . .)|Y) = p. Focusing only on the error process model, if we were
simply to condition the error at a new location, εp(s0), on εp, we would see that for
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εp(s0) =
√

2ξ(s0)
τp(1−p)Z(s0) + 1−2p

p(1−p)ξ(s0),

Z(s0)|εp, ξ(s0), ξ ∼ N(m(s0), σ(s0))
m(s0) = cT (s0, s; θ)C−1(s;θ)Z
σ(s0) = 1− cT (s0, s; θ)C−1(s;θ)c(s0, s;θ)

Z =
εp − 1−2p

p(1−p)ξ√
2

τp(1−p)ξ
.

Thus, εp(s0)|εp, ξ, ξ(s0), τ ∼ N
(

1−2p
p(1−p)ξ(s0) +m(s0)

√
2

p(1−p)ξ(s0), 2ξ(s0)
τp(1−p)σ(s0)

)
,

which does not have zero as the pth quantile, as desired. The pth quantile of this distri-
bution, in fact, is m(s0)

√
2

p(1−p)ξ(s0). So, subtracting off this unwanted shift, we arrive

at εp(s0)−m(s0)
√

2
p(1−p)ξ(s0)|εp, ξ, ξ(s0), τ ∼ N

(
1−2p
p(1−p)ξ(s0), 2ξ(s0)

τp(1−p)σ(s0)
)
, which has

a recognizable distribution. Namely, εp(s0)−m(s0)
√

2
p(1−p)ξ(s0) ∼ AL(p, 0, τ

σ(s0) ). This

equation is conditional on ξ(s0), which is unknown. Integrating over ξ(s0), we find that
ε(s0)−m(s0)

√
π

2p(1−p)τ2 =
∫ (

ε(s0)−m(s0)
√

2
p(1−p)ξ(s0)

)
dξ(s0) d= AL

(
p, 0, τ

σ(s0)

)
.

Finally, returning to the regression setting in which εp(s0) = Y (s0)− xT (s0)βp, we

have that Y (s0) − x(s0)Tβp −m(s0)
√

π
2p(1−p)τ2 | τ,βp,θ,Y ∼ AL

(
p, 0, τ

σ(s0)

)
, which

has zero as the pth quantile. So, to create the conditional spatial quantile estimate at a
new location, we define qp(Y (s0)|εp(s0)) = xT (s0)βp+qp(εp(s)|εp), where qp(εp(s)|εp) =

m(s0)
√

π
2p(1−p)τ2 is a spatial quantile interpolator for the error process. By a similar

argument, if we decompose Z(s0) = w(s0) + δ(s0), we can create a spatial quantile
interpolator that is conditional on the spatial random effects, w, i.e., qp(εp(s)|w)) =
E[w(s0) | w]

√
π

2p(1−p)τ2 replaces qp(εp(s)|εp).

6 Example: Baton Rouge real estate data

As an illustrative example and proof of concept, we fit the ALP at several quantiles to a
small dataset consisting of the log selling price of 70 homes in Baton Rouge, LA in June
1989, which can be found at www.biostat.umn.edu/ ˜brad/data2.html. As discussed in
Banerjee et al. (2004), we model the quantiles of the log-selling price of 60 houses, using
living area, other area, age, and number of bathrooms as explanatory variables. We leave
the remaining 10 houses as a hold out set, on which we will compare the performance
of the spatial to the non-spatial models. We use the pure error process specification for
ξ(s). We also partition Z(s) into w(s) and δ(s) as discussed in Section 5. More precisely,
we define the covariance function as c(si, sj ;φ, α) = (1−α) exp{−φ||si−sj ||}+α1[i = j],
i.e., an exponential covariance with parameter φ, a spatial variance (1−α), and a pure
error variance α.



246 Spatial Quantile Multiple Regression

6.1 Results

To evaluate the performance of the spatial method, we look at the average check loss
of the spatially interpolated quantile prediction from the ALP (from Section 5.4) minus
the actual values of the hold out set. We compare this check loss to that produced by
the Bayesian non-spatial quantile regression of Reed and Yu (2009). Losses are shown
in Table 1, both in and out of sample. We see that for each of the quantiles, the average
check loss of the hold out set was lower for the spatial model (the ALP) than for the
non-spatial model. We also show that the check loss of the difference between the data
and the spatially adjusted quantile is lower than that of the unadjusted quantile. The
spatial adjustments to the marginal quantile are shown in Figure 3.

In-Sample Out of Sample
p Spatial Non-Spatial Spatial Non-Spatial

0.2 0.70 0.74 0.53 0.58
0.3 0.79 0.85 0.63 0.67
0.4 0.85 0.92 0.70 0.72
0.5 0.87 0.94 0.72 0.73
0.6 0.86 0.90 0.69 0.70
0.7 0.81 0.84 0.59 0.62
0.8 0.72 0.72 0.46 0.49

Table 1: In-sample and out of sample check loss for the ALP.

Figure 4 shows the posterior mean estimates for each of the covariates across the
quantiles as compared with results obtained from the quantreg R package (Koenker
(2011)). In order to obtain these estimates, we used all of the 70 data points, rather
than reserving some for model comparison. A surprising result is that the effect of the
number of bathrooms changes sign across the quantiles. At the low quantiles, having
more bathrooms has a positive effect on log selling price while at the high quantiles,
more bathrooms induce lower log selling price. Although the effect of age is uniformly
negative across the quantiles, its effect is not as strong at the higher quantiles– possibly
accounting for an increased price for historic homes. One more point is the reversed
pattern across living area and other area. It seems that at the highest quantiles, if
one has a fixed amount of space to work with, it would be best to trade in other area
for living area. Figure 5 shows the mean and 95% posterior credible intervals for the
correlation between locations at the median inter-location distance.

7 The asymmetric Laplace predictive process

In the Bayesian setting, fitting spatial models using MCMC is computationally infeasible
for large datasets because of the need to invert covariance matrices at each iteration.



K. Lum and A. E. Gelfand 247

−0.08

−0.06

−0.04

−0.02

0.00

0.02

30.40 30.45 30.50 30.55 30.60

−91.15

−91.10

−91.05

−91.00

0.3

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

30.40 30.45 30.50 30.55 30.60

−91.15

−91.10

−91.05

−91.00

0.4

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

30.40 30.45 30.50 30.55 30.60

−91.15

−91.10

−91.05

−91.00

0.8

Figure 3: Contour plots of the spatial adjustment to the marginal quantile at p =
{.3, .4, .8}.

7.1 The spatial predictive process

The spatial predictive process model (SPP), as introduced in Banerjee et al. (2008) and
expanded upon in Finley et al. (2009), presents a reduced rank approach to accom-
modate the inversion of large matrices. They choose m “knots”, locations s∗ ∈ S∗,
and only require the Gaussian process specification to hold for these knots, i.e. the
joint distribution at these knots is the multivariate normal distribution for these knots
arising from the GP. At all other locations the w(s) are replaced by their conditional
expectation given the knots.



248 Spatial Quantile Multiple Regression

0.0 0.2 0.4 0.6 0.8 1.0

4e
−0
4

5e
−0
4

6e
−0
4

7e
−0
4

8e
−0
4

LivingArea

Quantiles

C
oe
ffi
ci
en
t

0.0 0.2 0.4 0.6 0.8 1.0

−3
e−
04

−1
e−
04

0e
+0
0

1e
−0
4

2e
−0
4

3e
−0
4

4e
−0
4

OtherArea

Quantiles

C
oe
ffi
ci
en
t

0.0 0.2 0.4 0.6 0.8 1.0

−0
.0
25

−0
.0
20

−0
.0
15

−0
.0
10

−0
.0
05

Age

Quantiles

C
oe
ffi
ci
en
t

0.0 0.2 0.4 0.6 0.8 1.0

−0
.5

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

Bathrooms

Quantiles

C
oe
ffi
ci
en
t

Figure 4: Posterior means for each regression coefficient across quantiles for the spatial
model (in black) with 95% credible intervals (gray), and the estimate produced by the
quantreg package (dashed) for comparison.

Specifically, focusing only on the error process, Banerjee et al. (2008) consider the
mean regression case. Following Section 3.2, the full error term εm(s) is decomposed
as wm(s) + δm(s), where the spatial random effects are wm(s) ∼ GP (0, σ2

mρ(s, s;θρ)),

and δm(s) iid∼ N(0, τ2
m) are the pure error nugget. Marginalizing over wm(s), εm(s) ∼

GP (0, c(s, s′;θ) = σ2
mρ(s, s′;θρ) + τ2

m1[s = s′]).

The SPP defines ε̃m(s) = w̃m(s) + δm(s), with w̃m(s) = cT (s, s∗;θ)C−1w∗, where
the m× n matrix c(s, s∗,θ) contains the covariances between each w(s) and w∗ under
the parent Gaussian process model. We see that w̃m(s) is simply E[wm(s)|w∗] under
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Figure 5: The mean correlation between locations at the median pairwise distance
across all quantiles (solid line) and associated 95% credible intervals (dashed lines).

the multivariate normal distribution, (wT ,w∗T )T ∼ Nn+m(0,C({s, s∗};θ). Although
w̃m(s) is a deterministic function given w∗, marginalizing over w∗ returns a zero-
centered normal distribution for εm(s) with covariance cT (s, s∗;θ)C(s∗;θ)c(s, s∗;θ).
Also notice that w̃m(s∗) = w∗ for any value of w∗, so changing from the standard
Gaussian process to the predictive process preserves the process at the knots.

Finley et al. (2009) present the modified predictive process, which corrects for
the systematic underestimation of the variance of the wm(s) by the spatial predic-
tive process. The modified predictive process fixes this problem by specifying ẅm(s) =
w̃m(s) + η̃m(s), where η̃m(s) iid∼ N(0, c(s, s)− cT (s, s∗;θ)C∗−1c(s, s∗;θ)). We now show
how a different modification of the predictive process can enable us to extend the ALP
to be able to handle large data sets.

7.2 The asymmetric Laplace predictive process

Let

ε̈p(s) =

√
2ξ(s)

τp(1− p)
Z̈(s) +

1− 2p
p(1− p)

ξ(s),
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where Z̈(s) = ẅ(s)+δ(s) is the modified predictive process of above with ẅ(s) = w̃(s)+
η̃(s) and η̃(s) iid∼ N(0, σ̈(s)) for σ̈(s) = (1 − α)(c(s, s;θ) − cT (s, s∗;θ)C∗−1c(s, s∗;θ))
and δ(s) iid∼ N(0, α). For the latent ξ(s), we again assume that ξ(s) iid∼ Ga(1, τ). This
specification retains the unit marginal variance of Z̈(s). Marginally ε̈p(s) ∼ AL(p, 0, τ)
at every location. We refer to this modified process as the asymmetric Laplace predictive
process (ALPP). Revised computation for MCMC model fitting with the ALPP is found
in Appendix B. With regard to spatial quantile prediction for this predictive process, we

notice that Y (s0)−x(s0)Tβp− w̃(s0)
√

2ξ(s0)
τp(1−p) ∼ N

(
1−2p
p(1−p)ξ(s0), 2ξ(s0)

τp(1−p) (σ̈(s0) + α)
)
,

so we are back to familiar territory. We recognize the form of this distribution as the
mixture that produces the asymmetric Laplace distribution with scale parameter τ

σ̈(s0)+α

when conditioning on w̃(s0), which is a deterministic function of w(s∗). Integrating
over ξ(s0) creates asymmetric Laplace errors. Then, much like with the ALP, Y (s0)−
x(s0)Tβp − w̃(s0)

√
π

2τ2p(1−p) ∼ AL(p, 0, σ̈(s0) + α), and from this we create a spatial

quantile interpolator for the ALPP, i.e., qp(Y (s0)|w̃(s0)) = x(s0)Tβp+w̃(s0)
√

π
2τ2p(1−p) .

8 Birth weight application

Quantile regression is usefully applied to birth weight because what is of interest is the
effect of various risk factors on the lower quantiles of the distribution, i.e., on low birth
weight. In fact, birth weight data has been a frequent source of quantile regression
applications. Koenker and Hallock (2001) and Reed and Yu (2009), for example, both
illustrate their quantile regression methods on birth weight data sets.

We, too, investigate the relationships between several covariates and birth weights.
We look at 3,229 single births that occurred in the city of Durham, North Carolina in the
year 2000, focusing on the lower quantiles of birth weight. With n = 3229, implementing
the ALP is computationally challenging, so we turn to the ALPP. As in Banerjee et al.
(2008), we randomly select 100 locations from among the 3,229 locations of the births to
be the knots. Though not generally good practice, to develop our application we have
omitted variables that themselves are spatially distributed, such as maternal race-group
and maternal education, to encourage residual spatial structure. Variables used in this
analysis include an indicator for whether the mother smoked during the pregnancy, an
indicator for whether the baby was male, and one variable indicating whether this was
the mother’s first birth. Multiple births were excluded from this data set, as were births
in which the mother used alcohol during the pregnancy. A histogram of birth weight
measured in grams for the 3,229 births (not shown) reveals customary left skewness
(primarily due to pre-term births).

Table 2 shows the average in-sample and out of sample check loss of the residuals
averaged over the iterations of the MCMC algorithm, which are calculated using the
predictive process’s spatial random effects. This is in comparison to the check loss of the
non-spatial model for each quantile. Estimates for the non-spatial model were obtained
from the quantreg R package. We find that in-sample, we are able to achieve very



K. Lum and A. E. Gelfand 251

Average Check Loss
In-Sample Out of Sample

p Spatial QuantReg Spatial QuantReg
0.05 75 82 82 85
0.1 115 122 123 125
0.2 169 173 174 176
0.3 200 205 205 206
0.4 217 221 221 222
0.5 220 224 224 225
0.6 210 215 212 214
0.7 186 191 184 186
0.8 147 152 145 146
0.9 93 96 91 92

0.95 55 56 55 55

Table 2: In- and out-of-sample mean check loss for the ALPP, non-spatial quantile
regression.

modest gains in terms of check loss. Out of sample check loss, which was evaluated on
300 births which were randomly chosen as a hold out set, also demonstrates very modest
improvement over the non-spatial model. Perhaps, Durham is too small geographically
to provide much residual spatial variation. Still, the model fitting is a useful exercise
to reveal this. Moreover, our modeling provides a template for application to other
geographic regions.

Figure 6 shows the posterior mean of each of the regression coefficients across quan-
tiles. The gray lines indicate 95% credible intervals around the black line, which is the
posterior mean of the coefficient at each of the quantiles. For the most part, the spatial
quantile regression analysis tells the same story as the non-spatial version. We see that
smoking during pregnancy has negative effects on birth weight across all quantiles. It
has been observed in the past that male babies are heavier than females on average. Our
analysis expands the story across quantiles. Although at all quantiles, the male babies
are heavier, the shift in weight for males increases with quantile. Similarly, first born
children are typically lighter than their younger siblings, which is visible in the negative
quantile regression coefficients across all quantiles. However, at the highest quantiles,
the advantage of being a younger sibling is much less than at the lowest quantiles.

A final bit of analysis looks at the behavior of the spatial decay parameter across
quantiles. The posterior mean of φ is such that, at the extreme quantiles, φ is markedly
smaller than near the median, implying a shorter range on the spatial process at the
median than at the extremes. This is shown in Figure 7, which reveals the posterior
mean and credible intervals of the correlation implied by φ for locations at the median
pairwise distance in this data set.
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Figure 6: These plots show the mean posterior quantile regression coefficients across
quantiles (black) within their 95% credible intervals (gray), as compared to the result
from the quantreg package (dashed).

9 Discussion

We have introduced the asymmetric Laplace process for quantile regression with spa-
tially dependent errors and have shown how to fit this model within a hierarchical
Bayesian framework using an MCMC algorithm. We demonstrated its use on a data
set of log-selling prices of homes. We have then extended the ALP to accommodate
large data sets through the ALPP and illustrated use of the ALPP on a data set of
birth weights given maternal covariates. Especially with the first example, we have
shown the advantage, in terms of conditional quantile prediction, that can be gained by
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Figure 7: This plot of the correlation implied by the parameter of the exponential
covariance function over the quantiles shows less correlation (smaller φ) at the extreme
low quantiles and more correlation (larger φ) towards the median.

incorporating the spatial structure via the ALP or ALPP.

As for future research, following Kottas and Krnjajić (2009) one might consider
introducing a different τ parameter for each side of the AL distribution in the ALP.
It would also be fruitful to consider alternatives to the AL that maintain zero as the
pth quantile but are more flexibly shaped and, then, ways in which these distributions
could be turned into processes. A particular opportunity involves using split Gaussian
or t-distributions.
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Appendix A: Full conditional distributions for MCMC fit-
ting with the ALP

We have data Y, an n×1 vector of outcomes, and X, an r×n matrix of covariates. Let
Dξ = 2

p(1−p)D(ξ) be an appropriately scaled n × n diagonal matrix with 2
p(1−p)ξ, the

n × 1 vector of latent variables times the appropriate scaling factor for the quantile in
question, on the diagonal. Moving to matrix notation for the points at which the data
is actually observed, we write

Y −XTβp|ξ ∼ N
(

1− 2p
p(1− p

ξ, τ−1D
1
2

ξ
C(s;θ)D

1
2

ξ

)
.
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Then, βp may be updated at each iteration of the sampler from the following mul-
tivariate normal distribution:

βp|τ, ξ,Y ∼ Nr(β̂p, Ŝβ)

Ŝβ =
(
τXT [D−1/2

ξ
C−1D

−1/2

ξ
]X + Σ−1

β

)−1

β̂p = Ŝβ

(
τXT [D−1/2

ξ
C−1D

−1/2

ξ
]
(

Y − 1− 2p
p(1− p)

ξ

)
+ Σ−1

β µβ

)
.

For improved mixing,Reed and Yu (2009) finds a marginal distribution for τ that
involves the check loss function and integrates out ξ. Due to the more complicated
covariance structure in this model, this same trick is not possible. However, the full
conditional distribution for τ is:

τ |ξ,βp, y ∼ Ga

(
aτ +

n

2
+ n, bτ +

1
2
uT [D−1/2

ξ
C−1D

−1/2

ξ
]u +

n∑
i=1

ξi

)

u =
(

Y − 1− 2p
p(1− p)

ξ −XTβp

)
.

In the non-spatial case, Reed and Yu (2009) is able to derive an inverse Gaussian full
conditional distribution for each element of ξ. In our case, the complicated covariance
matrix makes this impossible. Thus, we must sample each ξi using a Metropolis-Hastings
step at each iteration of the algorithm from:

ξi ∝ ξ1/2
i exp{−1

2
uTD−

1
2

ξ
C−1D

− 1
2

ξ
u + τξi}.

We have found that if we propose each ξi from an exponential distribution with
rate τ , as is specified in the hierarchy, the pieces involved in the Metropolis-Hastings
algorithm simplify nicely and the acceptance rate is generally within the range of values
that is considered appropriate.

The parameters of the covariance function are updated using Metropolis-Hastings.
All that is needed is that Z ∼ N(0,C(s;θ)) and the prior, π(θ). Z is easily obtained
as a function of βp, ξ, and τ as in Section 5.4, and θ may include α if ρZ has a nugget.
Because α is restricted to be between zero and one, a suitable prior for it is the uniform
distribution.
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Appendix B: Full conditional distributions for MCMC fit-
ting with the ALPP

Like in the ALP, by replacing Z(s) with Z̈(s), we lose conjugacy for ξ. For a particular
data set, at location si, the full conditional distribution of ξi is

ξi|w̃i, τ,βp ∝ ξ
−1/2
i exp

−1
2

(
Yi − xTi βp −

√
2ξi

τp(1−p) w̃i −
(1−2p)ξi
p(1−p)

)2

2ξi
τ ((1− α)σ̈i + α)


× exp {−ξiτ} .

We attain conditional independence for each of the ξi by conditioning on w̃. The
parameters having closed form full conditionals are the following:

βp ∼ Nr(A−1a,A−1)

A = XD
(
τp(1− p)
2ξ(α+ σ̈)

)
XT + Σβ

a = XD
(
τp(1− p)
2ξ(α+ σ̈)

)(
Y −XTβ − 1− 2p

p(1− p)
ξ

)
and

w∗ ∼ Nm(Z−1z, Z−1)
Z = C∗−1c(s, s∗;θ)D−1(σ̈ + α)cT (s, s∗;θ)C∗−1 + (1− α)C∗−1

z = C∗−1c(s, s∗;θ)D−1(σ̈ + α)
(

Y −XTβ − 1− 2p
p(1− p)

ξ

)√
τp(1− p)

2ξ
.

The rest of the parameters, θ, τ , ξ are updated with a Metropolis-Hastings step.
Proposing ξi from its prior, Exp(τ), is, again, a tuning-free solution to sampling from
its distribution that has worked well in practice. We may also bypass sampling w∗ by
employing the computationally friendly Sherman-Morrison-Woodbury formula (Harville
(1997))for matrix inversions to integrate over the w∗.

Appendix C: The AL as an error distribution

We briefly present a simulation example to demonstrate the adequacy of the asymmetric
Laplace distribution as an error distribution. Again, Yu and Moyeed (2001) show that
the posterior means obtained by assuming an asymmetric Laplace error at several values
of p serve as reasonable pth quantile point estimates. They do not, however, demonstrate
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that the associated credible intervals achieve nominal coverage, which may be of concern
at p for which the AL(p, 0, τ) is very different from the true distribution. We simulated
50 standard normal random variables and fit an intercept only quantile regression, thus
the quantile estimates are µp = Φ−1(p). We repeated this experiment 100 times, using
the prior specified in Section 5.3 with a = bκ = 1. Table 3 shows the results of this
simulation. We find that the 95% and 90% credible intervals for µp contain the true
value in approximately 95% and 90% of the simulations, respectively.

p True Value Posterior Mean 95% CI 95% CI Prop 90% CI Prop
0.1 -1.28 -1.38 [ -1.74 , -1.07 ] 0.94 0.91
0.25 -0.67 -0.73 [ -1.11 , -0.38 ] 0.91 0.88
0.5 0 0.16 [ -0.18 , 0.46 ] 0.96 0.89

Table 3: The true value of µp, the posterior mean from an illustrative simulation, the
associated 95% credible interval, and the proportion of the simulations for which the
true value of µp fell within the 95% and 90% credible intervals, obtained from a Gibbs
sampler that assumes an asymmetric Laplace error.
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