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SUMMARY

Despite recent insights into melanoma genetics,
systematic surveys for driver mutations are chal-
lenged by an abundance of passenger mutations
caused by carcinogenic UV light exposure.We devel-
oped a permutation-based framework to address
this challenge, employing mutation data from in-
tronic sequences to control for passenger mutational
load on a per gene basis. Analysis of large-scale
melanoma exome data by this approach discovered
six novel melanoma genes (PPP6C, RAC1, SNX31,
TACC1, STK19, and ARID2), three of which—RAC1,
PPP6C, and STK19—harbored recurrent and poten-
tially targetable mutations. Integration with chromo-
somal copy number data contextualized the land-
scape of driver mutations, providing oncogenic
insights in BRAF- and NRAS-driven melanoma as
well as those without known NRAS/BRAFmutations.
The landscape also clarified a mutational basis for
RB and p53 pathway deregulation in thismalignancy.
Finally, the spectrum of driver mutations provided
unequivocal genomic evidence for a direct muta-
genic role of UV light in melanoma pathogenesis.
INTRODUCTION

In recent years, much has been learned about the molecular

basis of melanoma genesis, progression, and response to

therapy. BRAF V600 mutations (present in 50% of melanomas)

predict clinical efficacy of RAF inhibitors such as vemurafenib;

activating KIT aberrations may predict response to tyrosine

kinase inhibitors such as imatinib, nilotinib, or dasatinib, and

some NRAS mutant tumors may exhibit sensitivity to MEK inhi-

bition (reviewed in Flaherty et al., 2012). Other melanoma gene

mutations that offer therapeutic insights include CDNK2A
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deletions, MITF amplification/alteration resulting in dysregula-

tion of ‘‘druggable’’ antiapoptotic proteins, and PTEN disruption

leading to PI3 kinase/AKT activation (reviewed in Chin et al.,

2006). The continuing discovery of recurrently mutated mela-

noma genes (Berger et al., 2012; Nikolaev et al., 2012; Stark

et al., 2012; Wei et al., 2011) and the lack of identified driver

mutations in the subtype without NRAS or BRAF mutation

suggest that genetic understanding of this malignancy remains

incomplete.

Although the potential of comprehensive genome sequencing

for melanoma gene discovery is recognized, there is also

increasing appreciation for the confounding impact of highmuta-

tional load due to UV mutagenesis. In particular, cutaneous

melanomas exhibit markedly elevated base mutation rates

compared to nearly all other solid tumors (Berger et al., 2012;

Pleasance et al., 2010), which is almost entirely attributable to

increased abundance of the cytidine to thymidine (C > T) transi-

tions characteristic of a UV-light-induced mutational signature.

Highly elevated somaticmutation rates that vary across genomic

loci may limit the ability of statistical approaches that assume

uniformity of the basal mutation rate to distinguish genes

harboring ‘‘driver’’ mutations (i.e., mutations that confer or at

some point conferred a fitness advantage to the tumor cell)

from those with ‘‘passenger’’ mutations (i.e., mutations that

never conferred a fitness advantage). Although methods to

account for this mutation rate heterogeneity are an active area

of research (Chapman et al., 2011; Greenman et al., 2006; Lohr

et al., 2012), rigorous approaches to address this challenge in

melanoma have been lacking.

A related question pertains to the tumorigenic effects of

UV-induced DNA damage at the nucleotide level. Epidemiolog-

ical and experimental data have established a causal role for

intense UV exposure during development (e.g., blistering

sunburns early in life) in melanoma genesis (reviewed in Garib-

yan and Fisher, 2010). Several model systems have also linked

UV-dependent tumorigenic effects to modulation of signaling

pathways (e.g., enhanced gamma interferon secretion [Zaidi

et al., 2011] and activation of c-Jun N-terminal kinase (JNK)

signaling pathway [Dérijard et al., 1994]), thus supporting a

nonmutagenic role in melanoma. Conversely, evidence for

a direct UV mutagenic effect in melanoma pathogenesis has

been more equivocal. For example, the recurrent base muta-

tions that produce oncogenic NRAS and BRAF mutations are

not C > T transitions indicative of UV mutagenesis. Definitive

resolution of this question requires demonstration of driver

mutations that are directly attributable to UV-induced damage

in melanoma.

To analyze whole-exome sequencing data from 121 mela-

noma tumor/normal pairs, we have employed a statistical

approach that infers positive selection at each gene locus based

on exon/intron mutational distributions, as well as the predicted

functional impact of each mutation. This approach enabled both

discovery of several new cancer genes with functionally conse-

quential (and plausibly actionable) mutations and identification

of numerous driver mutations directly attributable to UV muta-

genesis. In the aggregate, these results offer a comprehensive

view of the landscape of driver coding mutations in human

melanoma.
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RESULTS

Identification of Melanoma Coding Mutations
by Whole-Exome Sequencing
Solution-phase hybrid capture and whole-exome sequencing

were performed on paired tumor and normal genomic DNA ob-

tained from 135 patients with melanoma (Tables S1 and S2 avail-

able online). 103-fold mean target coverage was achieved, with

87% of bases covered at least 14-fold in the tumor and 8-fold in

the normal—the threshold which offers 80% power to detect

mutations with an allelic fraction of 0.3 (Carter et al., 2012). A

set of 121 tumor/normal pairs (15 primary tumors, 30 metastatic

samples, and 76 short-term cultures derived from metastatic

tumor tissue [Table S1]) were qualified for analysis. Altogether,

this sample collection comprised 95 melanomas of cutaneous,

5 of acral, 2 of mucosal, 1 of uveal, and 18 of unknown primary

origin. Somatic copy-number aberration profiles identified ex-

pected melanoma alterations (Curtin et al., 2005; Lin et al.,

2008), including gains ofMITF, TERT, and CCND1 and deletions

ofCDKN2A and PTEN, among others (Figure S1A and Table S3).

Across all samples, 86,813 codingmutations were detected at

a 2:1 ratio of nonsynonymous to synonymous events, which is

consistent with a high passenger mutation load (Table S4). The

median sample mutation rate was 14.4 coding mutations per

megabase (lower-upper quartile range: 8.0–24.9). As expected,

this rate was higher than that reported for any other tumor

type, including lung cancer (Lee et al., 2010; Pasqualucci et al.,

2011; Cancer Genome Atlas Research Network, 2011), and

a signature of UV mutagenesis predominated (median YC > YT

mutations: 82.2%; lower-upper quartile range: 73.4%–86.5%).

Accordingly, 13,905 genes harbored a nonsilent mutation in at

least one tumor, 9,782 genes were thus mutated in two or

more tumors, 515 genes were mutated in >10% of tumors, and

78 genesweremutated in >20%of tumors (Figure S1B). In genes

mutated in >10% and >20% of samples, 85.5% and 85.2%

of nonsilent coding mutations resulted from YC > YT transitions,

respectively, suggesting that many high-frequency melanoma

gene mutations may derive from UV-associated passenger

events.

We next sought to identify genes showing statistical evidence

for positive selection for nonsilent mutations, which is a chal-

lenging task in the context of melanoma’s high and heteroge-

neous basal mutation rate. To illustrate the problem introduced

by regional heterogeneity in basal mutation rates, we defined

significantly mutated genes by using a standard analytical

approach that assumes a uniform basal mutation rate across

the exome (controlling for trinucleotide context), as published

previously (Ding et al., 2008; Getz et al., 2007; Kan et al., 2010;

Stransky et al., 2011; Cancer Genome Atlas Research Network,

2011). This analysis produced a long list of genes (n = 544) with

nonsilent mutation frequencies exceeding the exomic average,

thus considered ‘‘significantly’’ mutated (Figure S1C). Many

of these genes showed high silent mutation rates (correlation

of significance rank with silent mutation rate: R = 0.29,

p < 2.2 3 10�16, Pearson’s; Figure S1D), suggesting locally

elevated basal mutation rates. Furthermore, numerous genes

were found to have minimal expression levels in melanoma

based on cross-cohort analysis of published RNA sequencing



(RNA-seq) data (correlation of significance rank with expression

level: R = �0.08 and p = 4.43 10�16) (Berger et al., 2010), which

is consistent with published studies showing that genes with

lower expression levels tend to harbor increased somatic muta-

tion rates (Chapman et al., 2011; Pleasance et al., 2010). We also

observed an anticorrelation between gene expression andmuta-

tion rate in our data (R = �0.10 and p = 4.4 3 10�16). Together,

these results highlighted the challenge of detecting positive

selection in the setting of variable basal mutation rates. Such

loci may accumulate frequent somatic mutations unrelated to

positive selection but were nonetheless deemed significant by

statistical approaches that assume uniform basalmutation rates.

Conversely, genes present in loci with low basal mutation rates

may accumulate few mutations. Here, evidence of positive

selection will only become apparent after accounting for this

reduced mutation rate. The high mutational burden linked to

UV exposure further exacerbates this problem in melanoma by

making heterogeneity in locus-specific mutation rates even

more pronounced.

Systematic Inference of Positive Selection at Putative
Melanoma Gene Loci
To more accurately ascertain positive selection in melanoma

genomes, we leveraged sequence data from flanking intronic

regions and other untranslated (UTR) DNA segments that are

captured alongside exonic targets during hybrid selection to

define the local base mutation rate. We reasoned that any DNA

sequence situated immediately adjacent to an exon is likely sub-

jected to similar mutagenic and repair processes as the exonic

sequence. Indeed, gene-specific intronic and exonic mutation

rates correlated in our data set across several orders of magni-

tude (R = 0.35 and p < 2.23 10�16; Figure S1E). However, unlike

nonsilent mutations in their exonic counterparts, mutations in

intronic andUTR sequences aremore likely to exist under neutral

selective pressure. Thus, mutation data obtained from these

flanking regions should offer a means by which locus-specific

mutation rates might be inferred.

A gene that contains a high frequency of nonsilent exonic

mutations and a low frequency of synonymous or intronic/UTR

mutations exhibits presumptive evidence of positive selection

during tumor evolution. Such a mutational pattern may signify

the presence of bona fide driver mutations in melanoma. On

the other hand, a gene with a high frequency of both nonsilent

exonic mutations and synonymous, intronic, and/or UTR muta-

tions is less likely to contain mutations that experienced positive

selection during tumorigenesis (Figure 1A). Based on these prin-

ciples, a null model of the distribution of all mutations across the

gene (exon, intron, and UTR) may be generated by random

permutation of the locations of all observed mutations (Fig-

ure 1B). This null model is computed per sample, as the locus

basal mutation rate may vary across samples. A permutation

test may then be performed to assess the statistical significance

of any set-wide observation in the gene compared to the null

model generated from all individual sample null models.

Employing this framework, we assessed the statistical signifi-

cance of the set-wide ‘‘functional mutation burden’’: the number

of samples harboring a nonsilent mutation of predicted func-

tional consequence (Adzhubei et al., 2010). Eleven genes were
found to harbor a statistically significant functional mutation

burden (q % 0.2; Benjamini and Hochberg, 1995) (Figures 1C

and S1F and Table S5). These included six well-known cancer

genes (BRAF, NRAS, PTEN, TP53, p16INK4a [transcript of the

CDKN2A gene locus], and MAP2K1) and five new candidates

(PPP6C, RAC1, SNX31, TACC1, and STK19). Manual review

and mass spectrometric genotyping of observed mutations at

these loci confirmed high nonsynonymous:synonymous muta-

tion ratios and low rates of silentmutations (Figure 1C and Tables

S5 and S6). Contrary to the output from the initial significance

analysis (described above), an overall bias toward lowly ex-

pressed genes was no longer evident (R = �0.04 and p = 6.2

3 10�6). As a control, we performed an analogous assessment of

the ‘‘synonymous mutation burden,’’ and no genes were identi-

fied as statistically significant by this analysis (Figure 1C and

Table S7). Thus, the incorporation of exonic and nonexonic

mutational data identified multiple loci that showed evidence of

positive selection and hence may contain genes that harbor

driver mutations.

Novel Melanoma Genes Are Linked to Known
Cancer-Relevant Pathways
The five novel candidate genes harboring putative somatic driver

mutations (PPP6C, RAC1, SNX31, TACC1, and STK19) had not

previously been recognized as significantly mutated in mela-

noma. PPP6C encodes for the catalytic subunit of the heterotri-

meric PP6 protein phosphatase complex (Stefansson et al.,

2008). Reports have implicated PPP6C as a tumor suppressor

due to its role in regulation of cell cycle and mitosis. PP6 nega-

tively regulates levels of the melanoma oncogeneCCND1 during

G1 phase of the cell cycle (Stefansson and Brautigan, 2007) and

is the major T-loop phosphatase for the mitotic kinase, Aurora A

(AurA), which is amplified in a number of human cancers (Lens

et al., 2010; Zeng et al., 2010). In the discovery set of 121

tumor/normal pairs, 11 melanomas (9%) harbored nonsynony-

mousPPP6Cmutations, 10 of whichwere predicted to be homo-

zygous events based on high mutant allele frequencies. 60% of

these PPP6C mutations clustered within a 12 amino acid region

flanking an arginine at codon 264 (four R264C mutations, two

S270L mutations, and one P259S mutation; Figure 2A). When

mapped onto the structure of the PP2A catalytic subunit

(�60% sequence homology to PPP6C; Figures 2A and S2A),

the PPP6C mutations localized to highly conserved regions. In

particular, R264 participates in multiple salt bridge interactions

at the interface between the catalytic and regulatory subunits

(Cho and Xu, 2007). The PPP6C R264C mutation was found at

a frequency of 3% in an extension set of 63 melanoma samples

(Table S8). Homozygous hot spot (defined as same amino acid

change in >3% of samples in the discovery set of 121) mutations

in R264 and nearby residues may result in altered interactions

between the PPP6C catalytic subunit and its regulatory partners.

The clustered mutation pattern and relative paucity of nonsense

mutations or frameshift indels are characteristic of gain-of-func-

tion mutations, suggesting that dysregulation of this protein

phosphatase’s function may contribute to melanoma biology.

Mutations in STK19 (a predicted kinase with unknown func-

tion) exhibited a hot spot pattern in melanoma. Six nonsynony-

mous STK19 mutations were detected in five tumors (4%) in
Cell 150, 251–263, July 20, 2012 ª2012 Elsevier Inc. 253



A
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Figure 1. Detection of Positive Selection for Nonsilent Mutations

(A) Gene A locus displaying a greater rate of nonsilent mutation compared to silent and intronic mutation rate (left) indicative of positive selection for nonsilent

mutations and gene B locus displaying approximately equivalent rates of nonsilent mutation and silent/intronic mutation (right) indicative of a nonsilent mutation

rate that matches the basal locus mutation rate.

(B) Schema of permutation-based framework for identifying genes harboring positively selected nonsilent mutations.

(C) Q-Q plot of functional mutation burden test (l = 1.02) and synonymous mutation burden test across all genes with at least one mutation in the set of 121

sequenced samples. Dashed line indicates q% 0.2 for the functional mutation burden test. Gray-shaded area represents 95% confidence interval for expected

p values.

Please see also Figure S1.
the discovery set (Figure 2B), four of which were located at D89

(D89N) with an immediately adjacent additional mutation (P90L).

D89N mutation showed a consistent frequency (5%) in a mela-

noma extension set of 59 tumors (Table S8). The pattern and

significance of its somatic hot spot point mutations are strong

genomic evidence in support of STK19 as a cancer gene.

In contrast, TACC1 and SNX31 exhibited a distributed pattern

of mutational events. SNX31 encodes the poorly characterized

protein sorting nexin 31. Mutations tended to occur within the

protein and lipid interaction band4.1/ezrin/radixin/moesin

(FERM)-like domain of SNX31 (Figure 2C), with one mutation in

the domain occurring in two separate melanoma cases and

over 60% of nonsilent mutations occurring in a 48 residue

window in this 440 residue protein. SNX31 has been reported

to bind active guanosine triphosphate (GTP)-loaded H-Ras, but

not inactive guanosine diphosphate (GDP)-loaded H-Ras, likely

through its FERM-like domain (Ghai et al., 2011), which suggests

a potential role for SNX31 as a Ras effector protein.

TACC1, encoding transforming acidic coiled-coil protein 1,

has been reported to stimulate the Ras and PI3K pathways

and to promote transformation in mice upon overexpression
254 Cell 150, 251–263, July 20, 2012 ª2012 Elsevier Inc.
(Cully et al., 2005). TACC1 is mutated in eight melanomas (7%)

in the discovery set, with mutations occurring predominately

near the C terminus of the protein, in or near the conserved

TACC domain (Figure 2D). TACC1 is known to interact with

AurA (Conte et al., 2003; Delaval et al., 2004), which is notable

in the context of PPP6C’s function as an AurA phosphatase

(Zeng et al., 2010).

Finally, 5% of discovery set melanomas harbored nonsilent

mutations in RAC1, a RAS-related member of the Rho subfamily

of GTPases. RAC1 functions as a molecular switch, cycling

between active GTP-bound and inactive GDP-bound states

through large conformation changes near the nucleotide-binding

site, localized to the switch I and II regions. Its best-character-

ized function is regulation of cytoskeleton rearrangement, and

thus it plays important roles in cellular adhesion, migration, and

invasion (Jaffe and Hall, 2005). Overexpression has been

reported in a number of malignancies (Karlsson et al., 2009).

RAC1mutations in our melanomas exhibited a hot spot pattern,

with all six mutations effecting the same nucleotide change (Fig-

ure 3A). This c.85C > T transition, resulting in a P29S amino acid

change, is the most frequent hot spot mutation after those in
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BRAF and NRAS (Table S9). Including verification data from two

independent extension sets (n = 59 and n = 175), the prevalence

of RAC1 P29S hot spot mutation in melanoma was validated to

be 3.9% (14/355 patients; Tables S8 and S10). In addition, muta-

tions in homologous residues in RAC2 (P29L) and RHOT1 (P30L)

were also found (Figure 3B), highlighting the importance of the

P29 residue as a possible codon targeted by hot spot mutations

in Rho family GTPases. We also observed a known RAS family-

activating mutation (G12D) (reviewed in Malumbres and Barba-

cid, 2003) in a gene encoding for another Rho family GTPase
member, CDC42 (Figure 3B). Together, these mutational data

implicate the Rho family members as melanoma oncogenes.

RAC1 P29S Mutation Is a Gain-of-Function Oncogenic
Event
To explore possible consequences of the RAC1 P29S mutation,

we conducted homology modeling based on crystal structures

of the 97% amino-acid-sequence-identical RAC3 in GDP-bound

and GTP/PAK1-bound conformations (Figures S3A and S3B). In

the GDP-bound state, P29 is found in a hydrophobic pocket in
Cell 150, 251–263, July 20, 2012 ª2012 Elsevier Inc. 255
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switch I, and S29 is predicted to be energetically less favorable

due to its lack of shape complementarity, reduced hydropho-

bicity, and unfavorable proximity of the serine hydroxyl oxygen

to adjacent hydrophobic residues (Figure 4A, bottom left and

right). In the GTP-bound state, the packing of the switch 1 loop

is less compact (Figure 4B, top left and right). The energetic

advantage of having the wild-type P29 rather than the mutant

S29 is therefore lost. Conversely, S29 is predicted to engage in

hydrogen bonds with the polar side and main chains of E31,

which would stabilize the GTP-bound form (Figure 4B, bottom

left and right). Furthermore, the P29S mutant is predicted to

gain more entropy upon transitioning from the GDP- to the

GTP-bound form than wild-type because, in the GDP-bound

state, switch 1 is tethered to the protein core, whereas in the

GTP-bound state, switch 1 flexibility is restricted by P29 (Fig-

ure S3C). These observations suggest that P29S mutation likely

destabilizes RAC1’s inactive GDP-bound state and favors its

active GTP-bound state.

Because active, GTP-loaded RAC1 is known to interact with

the p21-binding domain (PBD) of p21-activated protein kinase

1 (PAK1) to regulate downstream events relevant for tumorigen-

esis, PAK1 PBD pull-down assays can be employed to measure

GTP-bound RAC1. In HEK293FT cells, PAK1 PBD pull-down

revealed a significantly higher fraction of RAC1(P29S) in the

GTP-loaded active statewhen compared towild-type (Figure 4C,

compare lanes 2 and 3). As expected, a constitutively active

RAC1(Q61L) mutant was found in a robust GTP-loaded fraction

(Figure 4C, compare lane 2 to 4 and 5). In the presence of exog-

enous GDP, RAC1(P29S) demonstrated an attenuated shift to

the inactive, GDP-bound form, which was in accordance with

the structural prediction (Figure 4D, compare lanes 1 and 2 to

4 and 5). Importantly, the increase in GTP-loaded RAC1(P29S)

was also evident in immortalized human melanocytes stably
256 Cell 150, 251–263, July 20, 2012 ª2012 Elsevier Inc.
expressing oncogenic NRAS or BRAF

(Figures 4E and 4F). Together, the bio-

chemical and structural results support

the conclusion that theRAC1 P29Smuta-

tion is activating, rendering RAC1 prefer-

entially in an active, GTP-bound state.

Predicted Loss-of-Function
Melanoma Gene Mutations
Mutations in putative tumor suppressor

genes that result in protein truncation

may carry a higher likelihood of conferring

a fitness advantage to the tumor cell

compared to the effect of missensemuta-
tions in the same genes. As the permutation-based framework

described above modeled basal mutation rates without regard

to functional consequence of mutations, we next employed it

to detect genes with a higher ‘‘loss-of-function (LoF) mutation

burden’’ than was expected by chance. LoF mutations were

defined as nonsense, splice-site, and frameshift events. Both

p16INK4a and ARID2 showed statistically significant LoF burden

(q% 0.2; Table S11), with p16INK4a LoFmutations in 14 discovery

samples (12%) and ARID2 LoF mutations in 9 samples (7%).

All nonsensemutations inARID2, which encodeda component

of the SWI/SNF chromatin-remodeling complex, were predicted

to yield truncated variants lacking the C2H2 Zn-finger motifs

required for DNA binding (5% of samples) (Figure 5A), which is

reminiscent of the inactivating ARID2 mutations found in hepa-

titis-C-virus-associated hepatocellular carcinomas (Li et al.,

2011). Although ARID2 has not been previously identified as

significantly mutated in melanoma, singleton mutations—all

nonsense events—have been reported in three studies (Nikolaev

et al., 2012; Stark et al., 2012;Wei et al., 2011). A targeted search

for LoF mutations in other components of the SWI/SNF complex

identified three nonsense mutations in ARID1B (a gene that also

had a significant LoF burden, though it did not pass correction for

multiple hypothesis testing in our discovery set), three in

ARID1A, and one in SMARCA4 (Figure 5B). Thus, 13%

(16/121) of the discovery samples harbored a LoF mutation in

a component of the SWI/SNF complex, suggesting a role for dys-

regulation of chromatin remodeling in melanomagenesis.

A Landscape of Driver Mutations in Melanoma
The identification of known and novel drivers in this study

provided a global view of melanoma gene mutations. By cross-

referencing all observed mutations to recurrently mutated base

pairs (n R 20) reported in the COSMIC database (Forbes et al.,
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ARID2

(A) Schematic diagram of domains and mutations

in ARID2.

(B) Loss-of-function (nonsense, frameshift indel,

and splice-site) mutations in ARID2, ARID1B,

ARID1A, and SMARCA4 across sequenced

samples.
2011), we augmented this viewwith rare driver events whose low

frequency precluded statistical identification. This identified

driver mutations in CTNNB1, PIK3CA, p14ARF (alternative tran-

script of the CDKN2A gene locus), EZH2, IDH1, GNA11, KIT,

HRAS, and WT1 (Figure 6A and Table S12). To provide a fuller

context to the landscape, focal amplifications or deletions of

signature melanoma genes, such as amplifications in CCND1,

KIT, CDK4, and TERT and deletions in CDKN2A and PTEN,

were delineated in the same set of samples.

Integrating these mutational and copy number data, we map-

ped the spectrum of driver genes in Figure 6A. As expected, 83%

(100/121) of melanoma samples harbored either a hot spot or

a COSMIC-recurrent mutation (referred to hereafter as ‘‘highly

recurrent’’ mutations) inNRAS (n = 27) orBRAF (n = 73) in amutu-

ally exclusive fashion (p = 33 10�14, Fisher’s exact test). The two

cases with co-occurring BRAF and NRAS mutations harbored

either a non-V600 BRAF mutation, together with an oncogenic

NRAS mutation, or an NRAS mutation not known to be onco-

genic, together with an activating BRAF mutation. Nearly 44%

(32/73) of melanomas with highly recurrent mutations in BRAF

harbored a PTEN mutation or focal deletion; conversely, PTEN

was altered in only 4% (1/27) of melanomas with highly recurrent

mutations in NRAS (p = 4.93 10�5) (Figure S4A). Significance of

these mutational patterns was confirmed by a pairwise search

across all genes in Figure 6A (q % 0.2; Table S13).

The melanoma discovery set included 21 tumors without

highly recurrent mutations in either BRAF or NRAS (‘‘BRAF/

NRAS wild-type’’ samples) (Figure 6B). A search for genes

mutated in at least 25% of these samples and ranked among

the top 50 genes by functional mutation burden identified NF1.

A significant enrichment of NF1 mutations was observed in this

subset; putative loss-of-function NF1 mutations occurred in 5

of 21 of these tumors (25%) compared to 2 of the remaining

100 samples (2%) (p = 5.8 3 10�3) (Figure 6B). Given the role

of NF1 as a negative regulator of RAS signaling (Vigil et al.,

2010), these results suggest that NF1 inactivation may confer
258 Cell 150, 251–263, July 20, 2012 ª2012 Elsevier Inc.
aberrant mitogen-activated protein

kinase (MAPK) pathway activation in

these BRAF/NRAS wild-type samples. In

addition, an activating HRAS G13I muta-

tion, an activating CRAF E478K mutation

(Emuss et al., 2005), and two MAP2K1

mutations were observed in BRAF/

NRAS wild-type samples that were also

NF1 wild-type (Figure 6B). Of the 13 re-

maining BRAF/NRAS wild-type samples,

1 harbored an activatingKIT V559Amuta-

tion, 6 (1 of which was acral and 1 of
which was mucosal) showed focal amplification of KIT,

CCND1, and/or CDK4, and 1 (a uveal melanoma) possessed

an activating GNA11 Q209L mutation. Altogether, known mela-

noma driver events spanned 81% (17/21) of cases that lacked

highly recurrent NRAS or BRAFmutations (Figure 6B), providing

a unified view of driver mutations in this subtype of melanomas.

CDKN2A is a well-known melanoma tumor suppressor gene

that encodes for two tumor suppressor proteins through alterna-

tive splicing: (1) p16INK4a, a cyclin-dependent kinase inhibitor

that activates retinoblastoma (RB) through negative regulation

of CDK4, and (2) p14ARF, which activates p53 through inhibition

of its major negative regulator, MDM2 (Chin et al., 2006). The

p16INK4a transcript was mutated in greater than 20% of our

discovery set, with 14 out of 25 mutations being putative LoF

events. Coupled with one splice-site and two nonsense muta-

tions in RB1, as well as three R24 activating mutations in

CDK4, we estimated that the cell cycle checkpoint was deregu-

lated directly through somatic mutations of its core components

in at least 24% (29/121) of samples.Most of themelanoma cases

harboring p53 mutation (19% in the discovery set) were without

concurrent mutation in p14ARF or p16INK4a (Figure S4B). Taken

together, these data support the consensus view that genetic

pressure to mutate p53 directly in melanoma is reduced due to

frequent deletion of the CDKN2A locus, and these data also

show that p53 mutation is prevalent in a subset of melanoma

without p14ARF mutation.

Finally, LoF mutations in members of the SWI/SNF complex,

together with COSMIC-recurrent mutations in EZH2 and IDH1,

were found in 17% (20/121) of melanomas, providing genomic

evidence that chromatin-modifying proteins and epigenetic

regulators contribute to melanoma genesis or progression.

The Role of UV Mutagenesis in the Advent of Melanoma
Driver Gene Mutations
Next, we systematically addressed the direct effect of misrepair

of UV-induced DNA damage as a cause of melanoma driver
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Please see also Figure S4.
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Figure 7. Signature of UV Mutagenesis across Driver Mutations

(A and B) Total number (A) and percentage (B) of driver mutations caused

by UVB single nucleotide variant (SNV) (C > T), UVA SNV (G > T), UVB in half

of dinucleotide variant (DNV) (NC > NT; CN > TN), and UVA in half of DNV

(NG > NT; GN > TN) are indicated. Dotted line indicates exome-wide sample

median percentage UVB SNV (C > T).
mutations, namely C > T (by UVB) or G > T (by UVA). Specifically,

we assessed the distribution of mutations attributable to UV-

induced DNA damage among the driver mutations. Out of the

262 driver mutations in 21 genes defined by our analysis, 46%

were caused by C > T (37%) or G > T (9%) mutations character-

istic of UVB/UVA-induced mutations. This percentage increased

to 67% (103/150) when driver mutations in BRAF or NRAS were

excluded.

TP53 possessed the greatest number of total putative UV-

induced mutations among mutated melanoma genes identified

in this study (Figure 7A), challenging the dogma that often cites

its wild-type status as characteristic of human melanomas

(Chin et al., 2006; Flaherty et al., 2012). Presumed UV-induced

LoF mutations in known melanoma tumor suppressors (PTEN,

p14ARF, and p16INK4a) were also evident. Newly discovered

significantly mutated genes ARID2, PPP6C, SNX31, and

TACC1 each had a high fraction of mutations attributed to

C > T transitions, suggesting a possible role in UVB-induced

melanomagenesis.

The majority of known activating mutations in the MAPK

pathway, which include BRAF (c.1799T > A encoding V600E)

(n = 63), NRAS (c.182A > T, Q61L and c.182A > G, Q61R)

(n = 16), KIT (c.1676T > C, V559A) (n = 1), and GNA11

(c.626A > T, Q209L) (n = 1), do not appear attributable to direct

UV-induced damage (Figure 7A). There are possible exceptions

in mutations in BRAF, in which all dinucleotide mutations

include a C > T transition, including V600E (c.1799–1800TG >

AA) (n = 1), V600K (c.1798–1799GT > AA) (n = 7), V600R

(c.1798–1799GT > AG) (n = 1), and L597S (c.1789–1790CT >
260 Cell 150, 251–263, July 20, 2012 ª2012 Elsevier Inc.
TC) (n = 1), that could be attributed to UVB-induced mutagen-

esis. There are also mutations in RAS, including NRAS Q61K

(c.181C > A and c.180–181AC > CA) (n = 9), Q61R (c.181–

182CA > AG) (n = 1), G12D (c.35G > A) (n = 1), and HRAS

G13I (c.37–38GG > AT) (n = 1), which may result from UVA-

and UVB-induced damage.

Four genes, RAC1, STK19, FBXW7, and IDH1, all possessed

a relative percentage of C > T mutations that was above the

exome-wide per-sample median (�83%). Notably, the hot spot

mutations PPP6C R264C, STK19 D89N, and RAC1 P29S are

each mediated solely by presumptive UVB damage (Figure 7B).

Given evidence that P29S renders RAC1 preferentially in GTP-

bound form, leading to downstream activation of PAK signaling

(Figure 4), our data revealed the first example of a hot-spot-

activating mutation in a melanoma gene attributable to direct

UVB-mediated damage, providing definitive evidence for UV

mutagenesis in melanoma pathogenesis.

DISCUSSION

We described here a permutation-based framework (available

for download at http://www.broadinstitute.org/software/invex/)

that leverages intron and UTR sequences in a gene locus to

control for gene-specific basal mutation rates, which is a

conceptual advance that represents a natural but important

evolution of prior works. Pioneering studies have led to

increasing appreciation of the confounding effects of variable

regional basal mutation rates, motivating refinements such as

gene-specific basal mutation rate calculations based on synon-

ymous mutations, binning genes based on expression levels to

correct for correlation between expression and mutation rate,

and within-gene permutation tests to assess positional clus-

tering and evolutionary conservation of mutated residues

(Chapman et al., 2011; Ding et al., 2008; Greenman et al.,

2006; Kan et al., 2010; Lohr et al., 2012). We expect that future

research will account for within-gene variation in the basal muta-

tion rate and, with enough data, per-base basal mutation rates

can eventually be inferred. Local rate-altering events will also

need to be considered; for example, somatic rearrangements

have recently been reported to elevate the local mutation rate

(Nik-Zainal et al., 2012). Our results should motivate refinement

of the standard exon-capture bait set to expressly target

a portion of intron/UTR segments for use in basal mutation rate

modeling. With whole-genome sequence data, which fully

covers introns and UTRs, our approach can be more robust

and can offer increased statistical power.

Although we have assessed the significance of a gene’s func-

tional mutation burden by using PolyPhen-2 (Adzhubei et al.,

2010) in this study (as well as LoF mutation burden), other muta-

tion scoring algorithms (Cooper and Shendure, 2011) may too

prove useful. Increased cohort sizes (which will emerge in the

fullness of time through The Cancer Genome Atlas [TCGA] and

other large-scale efforts) will give sufficient power to evaluate

the significance of the more naive ‘‘nonsilent mutation burden,’’

which does not depend on functional prediction scores. More

broadly, this methodology of modeling locus-specific basal

mutation rates in combination with optional functional weighting

can improve the identification of driver mutations in nonexonic

http://www.broadinstitute.org/software/invex/


genomic regions predicted to experience positive selection,

such as conserved regulatory domains.

Although mutation prevalence of the novel melanoma genes

identified herein is relatively low, their importance extends

beyond melanoma, as underscored by cross-tumor relevance

and protein family recurrence. For example, RAC1 P29S muta-

tion has been reported in a head and neck tumor (Stransky

et al., 2011) and in a breast tumor (Forbes et al., 2011); further-

more, homologous P29 mutations in other Rho family members

were observed in melanoma (Figure 3). The appearance of

singleton known activating mutations in our cohort, such as

those seen in HRAS, GNA11, and KIT, predicts that larger

sequencing studies will uncover additional melanoma genes, re-

affirming the importance of systematic resequencing in statisti-

cally powered sets of human cancers.

Finally, although sun exposure has been shown to be a leading

risk factor for melanoma (Garibyan and Fisher, 2010), it has been

perplexing that the most prevalent UVB-radiation-induced

genetic change—the transition of a cytosine to a thymidine,

accounting for >70% of nucleotide substitutions—has not

been shown to be the molecular basis for known oncogenic

mutations in melanoma, including BRAF V600E and NRAS

Q61L/R. The identification of statistically significant hot spot

mutations inRAC1,STK19, and PPP6C resulting fromC> T tran-

sitions offers missing genomic evidence linking UVB mutagen-

esis mechanistically to this malignancy.
EXPERIMENTAL PROCEDURES

Clinical Samples

All melanoma samples analyzed in this study were collected and se-

quenced under Institution-Review-Board-approved protocols (MIT/COUHES

110700457). The DNeasy Tissue Kit or the QIAmp DNA Mini Kit (QIAGEN, Va-

lencia, CA) was used to extract genomic DNA from tissues. The Puregene DNA

Purification Kit (Gentra Systems, Minneapolis, MN) was used to extract

genomic DNA from short-term cultures. All DNA samples were subjected to

quality assessment.

DNA Library Preparation, Whole-Genome Sequencing, and

Assembly

Exome capture and library construction were performed as in Gnirke et al.

(2009) and were adapted for production-scale exome capture. Libraries

were sequenced on Illumina HiSeq 2000 machines, generating 2 3 76 bp

paired-end reads. Sequencing data obtained from the Illumina pipeline were

processed by the Picard pipeline (http://picard.sourceforge.net/).

High-Density SNP Arrays

DNA samples were hybridized to Affymetrix SNP Array 6.0 genome-wide

human SNP microarrays (Affymetrix, Santa Clara, CA), and chromosomal

copy number segments were determined as described previously (Cancer

Genome Atlas Research Network, 2008). A gene was identified as focally

amplified/deleted if a segment above absolute value 0.6 of length %5 Mb in-

tersected the gene. Significantly recurrent amplifications and deletions were

identified by using GISTIC (Beroukhim et al., 2007).

Exome Quality Assessment

Samples with nonaberrant copy number profiles and normal samples with

aberrant copy number profiles were removed from analysis. Each lane from

a tumor/normal pair was cross-checked to have the same SNP fingerprint

as each other lane from that pair; nonmatching lanes were removed from anal-

ysis. Cross-contamination was estimated by using ContEst (Cibulskis et al.,
2011) (Table S1B). Samples with greater than 10% contamination were

excluded from further consideration.

Identification of Somatic Substitutions and Indels

Somatic base-pair substitutions were identified by using MuTect (https://

confluence.broadinstitute.org/display/CGATools/MuTect), and somatic small

indels were identified by using Indelocator (https://confluence.broadinstitute.

org/display/CGATools/Indelocator), as in previous reports (Stransky et al.,

2011). Identified somatic mutations were annotated for effect of the mutation

on the protein product by using Oncotator, a comprehensive parsing script for

mutation annotation (https://confluence.broadinstitute.org/display/CGATools/

Oncotator). Each of the above algorithms or scripts was executed within the

Broad Firehose infrastructure (https://confluence.broadinstitute.org/display/

CGATools/Firehose).

Mutational Significance Assuming Uniform Background Mutation

Rate

An initial attempt at mutational significance analysis assuming a uniform

background mutation rate was performed by using the per-sample version

of MutSig described in the supplement of Getz et al. (2007).

Statistical Determination of Positive Selection for Nonsilent

Mutations

For each gene with at least one observed somatic mutation, the observed

mutation burden score was calculated (see below for three such score defini-

tions). Mutations were permuted randomly across the gene’s covered base

pairs, respecting trinucleotide context, and the mutation burden score of

the randomized instance was calculated. Up to 108 random instances were

generated and scored. The fraction of mutation burden scores for random

instances that was equal to or greater than the observed burden defined

the p value.

(1) Functional mutation burden: mutations were weighted with their Poly-

Phen-2 p value (Adzhubei et al., 2010). Frameshift indels, nonsense and

splice-site mutations, and mutations at a nucleotide mutated R5 times in

COSMIC (Forbes et al., 2011) were given a weight of 1. The mutation with

the largest weight was identified in each sample, and the sum of these largest

weights was defined as the functional mutation burden. (2) Synonymousmuta-

tion burden: the number of samples with R1 synonymous mutation. (3) LoF

mutation burden: the number of samples with R1 nonsense mutation, frame-

shift indel, or splice-site mutation. (To increase statistical power, we assessed

excess LoF mutation burden above 2.)

The source code for this method, termed InVEx (for ‘‘Introns versus Exons’’),

is available at http://www.broadinstitute.org/software/invex/.

Mutation Validation and Extension

Mass spectrometric genotyping (Sequenom) on melanoma samples and

accompanying normal tissue was performed as previously described (Stran-

sky et al., 2011; Thomas et al., 2007). MassEXTEND primers were designed

by using MassARRAY Assay Design Software from Sequenom, Inc. to

generate allele-specific products.

Homology Modeling and Structural Analysis

The structural analysis compared wild-type and P29S mutants of both

GDP-bound apo-RAC1 and GTP-bound RAC1 in complex with the PAK1

Cdc42/Rac interactive binding (CRIB) domain. Crystallographic models for

RAC1 exist for the GTP-bound state (1MH1) and for a particular Zn-bound

trimeric version of GDP-RAC1 (2P2L). However, a GTP and PAK1 CRIB-bound

crystal structure exists for RAC3 (2QME, 97% identical to RAC1 for all residues

included in the crystal structure; Figure S3). GDP-RAC3 has also been crystal-

lized (2G0N). RAC1 and RAC3 structures are highly similar and superimpose

with a root-mean-square distance (rmsd) of 1.1 Å and 0.9 Å for GDP- and

GTP-bound forms, respectively. To nonetheless avoid any influence of local

structural distortions due to the Zn-bound trimeric conformation of the GDP-

RAC1 structure, a homology model of RAC1 was built based on GDP-RAC3,

and this model was compared with a homology model of GTP-RAC1 bound

to PAK1 CRIB. Homology models were built by using SWISS-MODEL (Arnold

et al., 2006).
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Cell Culture

Human primary melanocytes (pMEL/hTERT/CDK4(R24C)/p53DD) expressing

either BRAF(V600E) (pMEL-BRAF) or NRAS(G12D) (pMEL-NRAS) have been

previously described (Garraway et al., 2005; Scott et al., 2011). HEK293FT

cells were obtained from Life Technologies (Grand Island, NY). All cells were

maintained in Dulbecco’s modified Eagle’s medium (Cellgro, Manassas, VA)

in 10% heat-inactivated fetal bovine serum (FBS) at 37�C in a humidified 5%

CO2 atmosphere.

Plasmids

pcDNA3-EGFP-RAC1 (wild-type, T17N, and Q61L) were obtained from Addg-

ene (plasmids 13719, 13720, and 13721) courtesy of Klaus Hahn (Kraynov

et al., 2000). pcDNA3-EGFP-RAC1(P29S) was generated by using Quik-

Change Lightning Site-Directed Mutagenesis (Stratagene, Santa Clara, CA)

according to the manufacturer’s instruction.

RAC1 Activation Assay

Equal amounts of pcDNA3-EGFP-RAC1 plasmids were transiently trans-

fected with Lipofectamine 2000 reagent (Invitrogen), and 48 hr posttrans-

fection RAC1 activation assay was performed according to themanufacturer’s

protocol (Cell Biolabs, Inc.). Briefly, cells growing in monolayers were lysed

in 10 cm tissue culture plates, cell lysates were cleared by centrifuga-

tion, and protein concentrations were determined by DC Protein Assay

(BioRad). Lysates were diluted to equal concentrations, and RAC1 pull-

down assays were performed with equal amounts of protein by using GST

fusion proteins containing the PBD of PAK1 coupled to glutathione agarose

beads for 1 hr. Pull-downs in the presence of exogenous GDP/GTPgS were

performed according to manufacturer’s instructions, followed by Western

analysis.
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Dérijard, B., Hibi, M., Wu, I.H., Barrett, T., Su, B., Deng, T., Karin, M., and Da-

vis, R.J. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that

binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037.

Ding, L., Getz, G., Wheeler, D.A., Mardis, E.R., McLellan, M.D., Cibulskis, K.,

Sougnez, C., Greulich, H., Muzny, D.M., Morgan, M.B., et al. (2008). Somatic

mutations affect key pathways in lung adenocarcinoma. Nature 455,

1069–1075.

Emuss, V., Garnett, M., Mason, C., and Marais, R. (2005). Mutations of C-RAF

are rare in human cancer because C-RAF has a low basal kinase activity

compared with B-RAF. Cancer Res. 65, 9719–9726.

Flaherty, K.T., Hodi, F.S., and Fisher, D.E. (2012). From genes to drugs:

targeted strategies for melanoma. Nat. Rev. Cancer 12, 349–361.

Forbes, S.A., Bindal, N., Bamford, S., Cole, C., Kok, C.Y., Beare, D., Jia, M.,

Shepherd, R., Leung, K., Menzies, A., et al. (2011). COSMIC: mining complete

cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic

Acids Res. 39 (Database issue), D945–D950.

Garibyan, L., and Fisher, D.E. (2010). How sunlight causes melanoma. Curr.

Oncol. Rep. 12, 319–326.

Garraway, L.A., Widlund, H.R., Rubin, M.A., Getz, G., Berger, A.J.,

Ramaswamy, S., Beroukhim, R., Milner, D.A., Granter, S.R., Du, J., et al.

(2005). Integrative genomic analyses identify MITF as a lineage survival

oncogene amplified in malignant melanoma. Nature 436, 117–122.
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