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 Graphical Perception: Theory, Experimentation,

 and Application to the Development of

 Graphical Methods

 WILLIAM S. CLEVELAND and ROBERT McGILL*

 The subject of graphical methods for data analysis and

 for data presentation needs a scientific foundation. In this

 article we take a few steps in the direction of establishing

 such a foundation. Our approach is based on graphical

 perception-the visual decoding of information encoded

 on graphs-and it includes both theory and experimen-

 tation to test the theory. The theory deals with a small

 but important piece of the whole process of graphical

 perception. The first part is an identification of a set of

 elementary perceptual tasks that are carried out when

 people extract quantitative information from graphs. The

 second part is an ordering of the tasks on the basis of

 how accurately people perform them. Elements of the

 theory are tested by experimentation in which subjects

 record their judgments of the quantitative information on

 graphs. The experiments validate these elements but also

 suggest that the set of elementary tasks should be ex-

 panded. The theory provides a guideline for graph con-

 struction: Graphs should employ elementary tasks as high

 in the ordering as possible. This principle is applied to a

 variety of graphs, including bar charts, divided bar charts,

 pie charts, and statistical maps with shading. The con-

 clusion is that radical surgery on these popular graphs is

 needed, and as replacements we offer alternative graph-

 ical forms-dot charts, dot charts with grouping, and

 framed-rectangle charts.

 KEY WORDS: Computer graphics; Psychophysics.

 1. INTRODUCTION

 Nearly 200 years ago William Playfair (1786) began the

 serious use of graphs for looking at data. More than 50

 years ago a battle raged on the pages of the Journal of

 the American Statistical Association about the relative

 merits of bar charts and pie charts (Eells 1926; Croxton

 1927; Croxton and Stryker 1927; von Huhn 1927). Today

 graphs are a vital part of statistical data analysis and a

 vital part of communication in science and technology,

 business, education, and the mass media.

 Still, graph design for data analysis and presentation is

 * William S. Cleveland and Robert McGill are statisticians at AT&T

 Bell Laboratories, Murray Hill, NJ 07974. The authors are indebted to

 John Chambers, Ram Gnanadesikan, David Krantz, William Kruskal,

 Colin Mallows, Frederick Mosteller, Henry Pollak, Paul Tukey, and the

 JASA reviewers for important comments on an earlier version of this

 article.

 largely unscientific. This is why Cox (1978) argued,

 "There is a major need for a theory of graphical methods"

 (p. 5), and why Kruskal (1975) stated "in choosing, con-

 structing, and comparing graphical methods we have little

 to go on but intuition, rule of thumb, and a kind of master-

 to-apprentice passing along of information.... there is

 neither theory nor systematic body of experiment as a

 guide" (p. 28-29).

 There is, of course, much good common sense about

 how to make a graph. There are many treatises on graph

 construction (e.g., Schmid and Schmid 1979), bad prac-

 tice has been uncovered (e.g., Tufte 1983), graphic de-

 signers certainly have shown us how to make a graph

 appealing to the eye (e.g., Marcus et al. 1980), statisti-

 cians have thought intensely about graphical methods for

 data analysis (e.g., Tukey 1977; Chambers et al. 1983),

 and cartographers have devoted great energy to the con-

 struction of statistical maps (Bertin 1973; Robinson, Sale,

 and Morrison 1978). The ANSI manual on time series

 charts (American National Standards Institute 1979) pro-

 vides guidelines for making graphs, but the manual ad-

 mits, "This standard ... sets forth the best current

 usage, and offers standards 'by general agreement' rather

 than 'by scientific test'" (p. iii).

 In this article we approach the science of graphs

 through human graphical perception. Our approach in-

 cludes both theory and experimentation to test it.

 The first part of the theory is a list of elementary per-

 ceptual tasks that people perform in extracting quanti-

 tative information from graphs. In the second part we

 hypothesize an ordering of the elementary tasks based

 on how accurately people perform them. We do not argue

 that this accuracy of quantitative extraction is the only

 aspect of a graph for which one might want to develop a

 theory, but it is an important one.

 The theory is testable; we use it to predict the relative

 performance of competing graphs, and then we run ex-

 periments to check the actual performance. The experi-

 ments are of two types: In one, once the graphs are

 drawn, the evidence appears so strong that it is taken

 prima facie to have established the case. When a strong

 effect is perceived by the authors' eyes and brains, it is

 likely that it will appear to most other people as well. In
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 the other type, the case is not so clear; we must show

 the graphs to subjects, ask them to record theirjudgments

 of quantitative information, and analyze the results to test

 the theory. Both types of experiments are reported in this

 article.

 The ordering of the elementary perceptual tasks can be

 used to redesign old graphical forms and to design new

 ones. The goal is to construct a graph that uses elemen-

 tary tasks as high in the hierarchy as possible. This ap-

 proach to graph design is applied to a variety of graphs,

 including bar charts, divided bar charts, pie charts, and

 statistical maps with shading. The disconcerting conclu-

 sion is -that radical surgery on these popular types of

 graphs is needed, and as replacements we offer some al-

 ternative graphical forms: dot charts, dot charts with

 grouping, and framed-rectangle charts.

 This is not the first use of visual perception to study

 graphs. A number of experiments have been run in this

 area (see Feinberg and Franklin 1975; Kruskal 1975,1982;

 and Cleveland, Harris, and McGill 1983 for reviews); but

 most have focused on which of two or more graph forms

 is better or how a particular aspect of a graph performs,

 rather than attempting to develop basic principles of

 graphical perception. Chambers et al. (1983, Ch. 8) pre-

 sented some discussion of visual perception, along with

 a host of other general considerations for making graphs

 for data analysis.

 Pinker (1982), in an interesting piece of work, devel-

 oped a model that governs graph comprehension in a

 broad way. The model deals with the whole range of per-

 ceptual and cognitive tasks used when people look at a

 graph, borrowing heavily from existing perceptual and

 cognitive theory (e.g., the work of Marr and Nishihara

 1978). No experimentation accompanies Pinker's mod-

 eling. The material in this article is much more narrowly

 focused than Pinker's; our theory deals with certain spe-

 cific perceptual tasks that we believe to be critical factors

 in determining the performance of a graph.

 2. THEORY: ELEMENTARY PERCEPTUAL TASKS

 In this and the next section we describe the two parts

 of our theory, which is a set of hypotheses that deal with

 the extraction of quantitative information from graphs.

 The theory is an attempt to identify perceptual building

 blocks and then describe one aspect of their behavior.

 The value of identifying basic elements and their in-

 teractions is that we thus develop a framework to organ-

 ize knowledge and predict behavior. For example, Ju-

 lesz's (1981) theory of textons identified the elementary

 particles of what is called preattentive vision, the instan-

 taneous and effortless part of visual perception that the

 brain performs without focusing attention on local detail.

 He wrote that "every mature science has been able to

 identify its basic elements ('atoms,' 'quarks,' 'genes,'

 etc.) and to explain its phenomena as the known inter-

 action between these elements" (Julesz in press).

 Figure 1 illustrates 10 elementary perceptual tasks that

 people use to extract quantitative information from

 POSITI POSITIO LENGTH

 COMWJN SCALE NON-ALIGNED SCALES

 DIRECTAION ANGLE AREA

 VOLLUE CURVATURE SHADING

 COLO SATURATI

 Figure 1. Elementary perceptual tasks.

 graphs. (Color saturation is not illustrated, to avoid the

 nuisance and expense of color reproduction.) The pic-

 torial symbol used for each task in Figure 1 is meant to

 be suggestive and might not necessarily invoke only that

 task if shown to a viewer. For example, a circle has an

 area associated with it, but it also has a length, and a

 person shown circles might well judge diameters or cir-

 cumferences rather than areas, particularly if told to do

 so.

 We have chosen the term elementary perceptual task

 because a viewer performs one or more of these mental-

 visual tasks to extract the values of real variables rep-

 resented on most graphs. We do not pretend that the items

 on our list are completely distinct tasks; for example,

 judging angle and direction are clearly related. We do not

 pretend that our list is exhaustive; for example, color hue

 and texture (Bertin 1973) are two elementary tasks ex-

 cluded from the list because they do not have an unam-

 biguous single method of ordering from small to large and

 thus might be regarded as better for encoding categories

 rather than real variables. Nevertheless the list in Figure

 1 is a reasonable first try and will lead to some useful

 results on graph construction.

 We will now show how elementary perceptual tasks

 are used to extract the quantitative information on a va-

 riety of common graph forms.

 Sample Distribution Function Plot

 Figure 2 is a sample distribution function plot of mur-

 ders per i05 people per year in the continental United

 States. The elementary task that one carries out to per-

 ceive the relative magnitude of the values of the data is
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 Figure 2. Sample distribution function of 1978 murder rate.

 judging position along a common scale, which in this case

 is the horizontal scale.

 Bar Charts

 Figures 3 and 4 contain bar charts that were shown to

 subjects in perceptual experiments. The few noticeable

 peculiarities are there for purposes of the experiments,

 described in a later section.

 Judging position is a task used to extract the values of

 the data in the bar chart in the right panel of Figure 3.

 But now the graphical elements used to portray the

 data-the bars-also change in length and area. We con-

 jecture that the primary elementary task is judging po-

 sition along a common scale, but judgments of area and

 length probably also play a role.

 Pie Charts

 The left panel of Figure 3 is a pie chart, one of the most

 commonly used graphs for showing the relative sizes of

 the parts of a whole. For this graph we conjecture that

 the primary elementary visual task for extracting the nu-

 merical information is perception of angle, but the areas

 and arc lengths of the pie slices are variable and probably

 are also involved in judging the data.

 Divided Bar Charts

 Figure 4 has three div'ided bar charts (Types 2, 4, and

 5). For each of the three, the totals of A and B can be

 compared by perceiving position along the scale. Position

 judgments can also be used to compare the two bottom

 diviionsin ech cse; or Tpe 2the otto divsin

 are arkd wth ots.Allothr vluesmus becomare

 by he lemntay tsk f prcevin difernt ar enghs

 examples are the two divisions marked with dots in Type

 4 and the two marked in Type 5.

 Statistical Maps With Shading

 A chart frequently used to portray information as a

 function of geographical location is a statistical map with

 shading, such as Figure 5 (from Gale and Halperin 1982),

 which shows the murder data of Figure 2. Values of a

 real variable are encoded by filling in geographical re-

 gions using any one of many techniques that produce

 gray-scale shadings. In Figure 5 the technique illustrated

 uses grids drawn with different spacings; the data are not

 proportional to the grid spacing but, rather, to a compli-

 cated function of spacing. We conjecture that the primary

 elementary task used to extract the data in this case is

 the perception of shading, but judging the sizes of the

 squares formed by the grids probably also plays a role,

 particularly for the large squares.

 Curve-Difference Charts

 Another class of commonly used graphs is curve-dif-

 ference charts: Two or more curves are drawn on the

 graph, and vertical differences between some of the

 curves encode real variables that are to be extracted. One

 type of curve-difference chart is a divided, or aggregate,

 line chart (Monkhouse and Wilkinson 1963), which is typ-

 ically used to show how parts of a whole change through

 time.

 Figure 6 is a curve-difference chart. The original was

 drawn by William Playfair; because our photograph of

 the original was of poor quality, we had the figure re-

 drafted, trying to keep as close to the original as possible.

 The two curves portray exports from England to the East

 Indies and imports to England from the East Indies. The

 vertical distances between the two curves, which encode

 the export-import imbalance, are highlighted. The quan-

 titative information about imports and exports is ex-

 tracted by perceiving position along a common scale, and

 the information about the imbalances is extracted by per-

 ceiving length, that is, vertical distance between the two

 curves.

 Cartesian Graphs and Why They Work

 Figure 7 is a Cartesian graph of paired values of two

 variables, x and y. The values of x can be visually ex-

 40

 c< 0WBHEl

 a A BC D E

 Figure 3. Graphs from position-angle experiment.
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 TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5

 100o 10oo 100- 10oo 100-

 IhLL O_ 0A A *

 A B A B A B A B A B

 Figure 4. Graphs from position-length experiment.

 tracted by perceiving position along a scale, in this case

 the horizontal axis. The y values can be perceived in a

 similar manner.

 The real power of a Cartesian graph, however, does

 not derive only from one's ability to perceive the x and

 y values separately but, rather, from one's ability to un-

 derstand the relationship of x and y. For example, in Fig-

 ure 7 we see that the relationship is nonlinear and see the

 nature of that nonlinearity. The elementary task that en-

 ables us to do this is perception of direction. Each pair

 of points on the plot, (xi, yi) and (xj, yj), with xi =$ Xj,

 has an associated slope

 (yj - y)(xj - xi).

 The eye-brain system is capable of extracting such a

 slope by perceiving the direction of the line segment join-

 ing (xi, yi) and (xj, yj). We conjecture that the perception

 of these slopes allows the eye-brain system to imagine

 a smooth curve through the points, which is then used to

 judge the pattern. For example, in Figure 7 one can per-

 ceive that the slopes for pairs of points on the left side

 of the plot are greater than those on the right side of the

 plot, which is what enables one to judge that the rela-

 tionship is nonlinear.

 That the elementary task of judging directions on a

 Cartesian graph is vital for understanding the relationship

 of x and y is demonstrated in Figure 8. The same x and

 y values are shown by paired bars. As with the Cartesian

 MURDER RATES, 1978

 8.5 FIVE REPRESETIV

 SHADINGS- _ , _,

 RE 12.1_

 -~ 1 5.8-

 RATES PER 100,000 POPULATION

 Figure 5. Statistical map with shading.
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 Figure 6. Curve-difference chart after Playfair.

 graph, one can perceive the x and y values by perceiving

 their positions along a common scale. But with the ability

 to perceive slopes removed, the pattern of the nonlinear

 relationship is difficult to perceive.

 Triple Scatterplots

 Figure 9 is a triple scatterplot of three real variables,

 (xi, yi, zi), for i = 1 to 25. (The name triple scatterplot

 was suggested by Anscombe 1973.) The x and y values

 are portrayed by the centers of the circles and so form

 an ordinary Cartesian graph. The third variable is en-

 coded by the areas of the circles; thus the elementary

 perceptual task for extracting the zi is area perception.

 Volume Charts

 The elementary task required in Figure 10 is volume

 perception. Such volume charts are used very infre-

 quently in science and technology but are common in

 mass-media graphics (Tufte 1983).

 Juxtaposed Cartesian Graphs

 Frequently two or more panels of graphs are juxta-

 posed with the scales on the panels the same. Figure 11,

 which will be explained later, is an example of this; we

 juxtaposed the graphs because superimposing them

 would have resulted in an uninterpretable mess. In Figure

 11, when we compare the log errors from two panels that

 are not in the same row, we must make judgments of

 positions along nonaligned scales.

 3. THEORY: ORDERING THE ELEMENTARY

 PERCEPTUAL TASKS BY THE ACCURACY

 OF EXTRACTION

 In this section we hypothesize an ordering of the 10

 elementary perceptual tasks on the basis of the accuracy

 with which people can extract quantitative information

 by using them. One elementary perceptual task is taken

 to be more accurate than another if it leads to human

 judgments that come closer to the actual encoded quan-

 tities.

 One must be careful not to fall into a conceptual trap

 by adopting accuracy as a criterion. We are not saying

 that the primary purpose of a graph is to convey numbers

 with as many decimal places as possible. We agree with

 Ehrenberg (1975) that if this were the only goal, tables

 would be better. The power of a graph is its ability to

 enable one to take in the quantitative information, or-

 ganize it, and see patterns and structure not readily re-

 vealed by other means of studying the data.

 Our premise, however, is this:

 A graphical form that involves elementary perceptual

 tasks that lead to more accurate judgments than an-

 other graphical form (with the same quantitative in-
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 Figure 7. Cartesian graph.

 formation) will result in better organization and in-

 crease the chances of a correct perception of patterns

 and behavior.

 In Section 5 we give examples of patterns emerging when

 elementary perceptual tasks are changed to increase the

 accuracy of judgments.

 o

 cn

 w

 -J
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 0

 xy xy xy xy xy xy xy xy xY xy xy xy xy xy xy

 Figure 8. Bar chart with paired X and Y values.
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 Figure 9. Triple scatterplot.

 The following are the 10 elementary tasks in Figure 1,

 ordered from most to least accurate:

 1. Position along a common scale

 2. Positions along nonaligned scales

 3. Length, direction, angle

 4. Area

 5. Volume, curvature

 6. Shading, color saturation

 Figure 10. Volume chart.
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 Figure 1 1. Position-length experiment: Midmeans of log absolute errors against judgment type for 10 pairs of judged values.

 Three of the ranks-3, 5, and 6-have more than one

 task; at the moment there is not enough information to

 separate the ties.

 The hypothesized ordering of the elementary tasks is

 based on information from a variety of sources: our own

 reasoning and experimentation with various graph forms,

 results of psychophysical experiments, and the theory of

 psychophysics. The following discussion attempts only a

 partial documentation. The sources of the theoretical or-

 dering are not the most cogent factors in establishing it;

 rather, using the theory to predict the performance of

 graph forms and then running experiments to check the

 predictions is the cogent process for validating and re-

 vising the theory. It is only through such a procedure that

 we can claim to be establishing a science of graphical

 perception. A few comments about the sources of the

 ordering, however, will at least convey the process used

 to devise it.

 In the ordering of perceptual tasks, length judgments

 are hypothesized to be more accurate than area judg-

 ments, which in turn are hypothesized to be more ac-

 curate than volume judgments. This ordering is based on

 a combination of psychophysical theory and experimental

 results.

 Suppose an individual is asked to judge the magnitude

 of some aspect of a physical object such as length, area,

 volume, distance, loudness, weight, or pitch. The power

 law of theoretical psychophysics (Stevens 1975) says that

 if p is the perceived magnitude and a is the actual mag-

 nitude, then p is related to a by p = kaa. If a 1 and a2 are

 two such magnitudes and Pi and P2 are corresponding

 perceived values, then P 1IP2 = (a ila2)a. Thus only if a

 = 1 is the perceived scale the same as the actual physical

 scale. For visual perception this power law appears to be

 a good description of reality (Baird 1970).

 Many psychophysical experiments have been con-

 ducted to estimate values of a. For judgments of length,

 area, or volume, average values of a from different ex-

 periments can vary according to how instructions are

 phrased and according to many experimental factors.

 And for a particular experiment, values of a can vary

 substantially for different subjects. Baird (1970) gave an

 excellent review of a large number of experiments; one

 pattern that emerges is that values of a tend to be rea-

 sonably close to 1 for length judgments, smaller than 1

 for area judgments, and even smaller for volume judg-

 ments. This means that length judgments tend to be un-

 biased, whereas there tends to be distortion in area judg-
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 ments and even more in volume judgments. Partly for

 this reason we have set the order (as given previously)

 to be length, then area, and then volume.

 Of course increased bias does not necessarily imply

 less overall accuracy. The reasoning, however, is that the

 mechanism leading to bias might well lead to other types

 of inaccuracy as well. We might try to combat bias and

 increase the accuracy of judgments by taking the areas

 or volumes to be proportional to power-transformed val-

 ues of the data. Cleveland, Harris, and McGill (1983) gave

 reasons for not doing this, however, one of which is that

 the power coefficients vary from one person to the next.

 The reason for putting position along nonaligned scales

 ahead of length is that there are additional visual cues on

 nonaligned scales to help in making judgments. We il-

 lustrate this with one particular graph form. The top of

 Figure 12 shows two bars, or rectangles, with equal

 widths and unequal heights. Suppose bar height encodes

 some real variable; the elementary perceptual task-

 judging length-is hard enough that we cannot easily per-

 ceive which bar is longer in Figure 12.

 In the bottom of Figure 12, the same bars are drawn,

 but they are surrounded by frames of equal size and con-

 struction. Each symbol, called aframed rectangle, is ac-

 tually a little graph with a scale and with one number

 portrayed. The elementary perceptual task is judging po-

 sition along nonaligned scales, and now we can easily see

 that the right bar represents a larger quantity than the

 left. Actually, because the framed rectangle is such a sim-

 ple graphical form, the task of judging position along non-

 aligned scales really amounts to two length judgments (as

 will be discussed shortly). In other circumstances, where

 the graph form is more complex (such as Figure 11, which

 was discussed in Section 2), a more complex set of visual

 tasks makes up the position-along-nonaligned-scales task

 because there are more visual cues.

 Weber's Law (cf. Baird and Noma 1978), an important

 law of theoretical psychophysics, helps to explain how

 the frame of a framed rectangle increases accuracy. Sup-

 p-ose x is the length of some physical object, such as a

 line or bar. Suppose that dp(x), a positive number, is de-

 fined by the following: An object with length x + dp(x)

 is detected with probability p to be longer than the object

 with length x. Then Weber's Law states that for fixed p,

 dp(x) = kpx, where kp does not depend on x. This law

 appears to hold up well for a variety of perceptual judg-

 ments, although Gregory (1966) argued that a modifica-

 tion for small values of x is needed.

 The unfilled portion of a framed rectangle creates an

 unfilled bar with a length equal to the length of the frame

 minus the length of the filled bar. The lengths of the un-

 filled bars give additional visual cues to help in judging

 the encoded numerical quantities. Suppose two framed

 rectangles have filled bars that are long and close in

 length, such as in the bottom of Figure 12. Then the per-

 centage difference of the lengths of the unfilled bars is

 much greater than that of the filled bars; by Weber's Law

 one can much more readily detect a difference in the short

 B

 A

 B

 A

 Figure 12. Bars and framed rectangles.

 unfilled bars than in the long filled bars. Thus it is the

 unfilled bars in the bottom of Figure 12 that allow the

 perception of a difference that is not perceptible in the

 top.

 In Section 5.3 we put the framed rectangle to work to

 design a new type of statistical map.

 4. EXPERIMENTATION

 4.1 Introduction

 We began checking the hypothesized ordering by run-

 ning two experiments. The experiments demonstrated

 very clearly that some judgments of position along a com-

 mon scale are more accurate than some judgments of

 length and of angle. Strictly speaking we cannot do more

 than assert that the results hold for the particular types

 of graphs in the experiment, but the important point is

 that the theory has correctly predicted the outcome. This

 section contains a detailed description of the experiment
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 and a detailed analysis of the data. (Those not interested

 in the details can read the summary in Section 4.5 and

 proceed to the application of the theory and experiments

 to graph design in Section 5.)

 4.2 Design

 In one experiment 55 subjects were shown the five

 types of graphs depicted in Figure 4. (The graphs used in

 the experiment were much larger than in Figure 4, each

 being on a separate 8 x 11 page and filling a large portion

 of the page.) Each graph was either a divided bar chart

 (as in the rightmost panel) or a grouped bar chart (as in

 the leftmost panel). A grouped bar chart can be used to

 show the same type of data as a divided bar chart by

 encoding the total by the left bar of each group and en-

 coding the divisions by the remaining bars. On a grouped

 bar chart, unlike on a divided bar chart, all values can be

 extracted and compared by judging position along a com-

 mon scale.

 On each graph two bars or divisions were marked with

 dots, and subjects were asked to judge what percent the

 smaller is of the larger. For the grouped bar charts, the

 dots appeared either in the second and third bars of the

 left group or in the second bars of the two groups. For

 the divided bar chart, the dots appeared either in the bot-

 tom divisions of the two bars or in the top divisions of

 the two bars or in the top two divisions of the left bar.

 For Judgment Types 1-3, subjects had to judge position

 along a common scale, and for Judgment Types 4 and 5,

 subjects had to judge length. Hence we call this the po-

 sition-length experiment.

 In this position-length experiment, the values involved

 in the subjects' judgments were

 s, = 10 x io(i-1)/12, i = 1, . . . , 10,

 which are equally spaced on a log scale and range from

 10 to 56.2. Subjects judged the ratios of 10 pairs of values;

 the ratios ranged from .18 to .83. Each pair of values was

 judged five times, once for each of the five judgment

 types.

 Bar segments and heights not judged were chosen es-

 sentially at random, but subject to certain constraints. In

 particular, for Type 4 stimuli neither the top nor the bot-

 tom of the two topmost bar segments was permitted to

 have the same y value, since this would permit judgment

 along a common scale.

 For each graph the subjects were asked to indicate

 which of the two bars or two segments was the smaller.

 Next they were to judge what percentage the smaller was

 of the larger. The instructions specifically stated that sub-

 jects were to make "a quick visual judgment and not try

 to make precise measurements, either mentally or with

 a physical object such as a pencil or your finger." Only

 four errors occurred in the choice of which bar or segment

 was smaller.

 Graphs were presented in stapled packets. The instruc-

 tion sheet was the first page. The next five were practice

 graphs, one of each type, followed by a page marked

 "STOP." The 50 graphs, in random order, completed the

 packet. All packets were identical. Answers were rec-

 orded on separate answer sheets, and subjects were in-

 structed not to write on the graphs.

 In the second experiment 54 subjects judged the two

 types of graphs shown in Figure 3; one type was a pie

 chart and the other was an ordinary bar chart. Ten sets

 of five numbers that added to 100 were generated, and

 each set was encoded by a bar chart and a pie chart,

 resulting in 20 graphs. For each graph, the answer sheet

 indicated which pie segment or bar was largest and sub-

 jects were asked to judge what percentage each of the

 other four values was of the maximum. Since subjects

 were judging position or angle, we call this the position-

 angle experiment.

 The values were randomly generated by a uniform ran-

 dom-number generator, with results rescaled to sum to

 100. Each set was constrained to meet three require-

 ments: The minimum value had to be greater than 3; the

 maximum value had to be less than 39, and all differences

 between values in a set had to be greater than .1. Sets

 not meeting these requirements were rejected. For the

 values that actually arose in the constrained randoin se-

 lection, the ratios ranged from 10.0 to 99.7%.

 The instruction sheet described the task to be per-

 formed on each stimulus-"to judge what percent each

 of the other segm'ents or bars is of the largest." It also

 explained that on the answer sheet, the largest segment

 would be marked with an X. As in the previous experi-

 ment, subjects were instructed to make quick visual judg-

 ments, not measurements.

 Graphs were put in stapled packets. The instruction

 sheet was the first page. The next two pages were practice

 graphs-one bar chart and one pie chart-followed by a

 page marked "STOP." The 20 graphs, in random order,

 completed the packets. All packets were identical. An-

 swers were recorded on separate sheets.

 4.3 Data Exploration

 Subjects and Experimental Units

 In the position-length experiment, the judgments of

 four people were deleted because it was clear from their

 answers that they had not followed instructions. In the

 position-angle experiment, the judgments of three sub-

 jects were deleted for the same reason. For both exper-

 iments, 51 subjects remained for analysis.

 For each experiment the subjects fell into two cate-

 gories: (1) a group of females, mostly housewives, with-

 out substantial technical experience; (2) a mixture of

 males and females with substantial technical training and

 working in technical jobs. Most of the subjects in the

 position-length experiment participated in the position-

 angle experiment; in all cases repeat subjects judged the

 position-angle graphs first.

 We did not detect any differences in the accuracies of

 the judgments of the nontechnical and technical groups.

 This is not surprising, since the perceptual tasks that sub-
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 jects were asked to carry out were very basic ones carried

 out in everyday activities. Thus we treated the subjects

 as a homogeneous sample that could be used to make

 inferences about people in general.

 It is important to think of each judgment made from a

 graph in the two experiments as an experimental unit. In

 the position-length experiment there were 50 judgments,

 which can be cross-classified into 10 ratios judged for

 each of five types of judgments: three length judgments

 and two position judgments. In the position-angle ex-

 periment there were 80 judgments, which can be cross-

 classified into 40 judged ratios for each of two types of

 jugments: one angle judgment and one position judgment.

 Accuracy

 To measure accuracy we used

 log2( 1 judged percent - true percent I + 1/8).

 A log scale seemed appropriate to measure relative error;

 we added 1/8 to prevent a distortion of the scale at the

 bottom end because the absolute errors in some cases got

 very close to zero. We used log base 2 because average

 relative errors tended to change by factors less than 10.

 For a large number of the experimental units in each

 experiment, normal probability plots were made of the

 log errors; they showed substantial nonnormality in the

 empirical distribution of the log errors across subjects for

 each experimental unit. The deviations from normality

 were

 1. Discrete data caused by subjects' tendencies to use

 multiples of five as answers

 2. Mild skewness, sometimes to the left and sometimes

 to the right

 3. Frequent outliers

 Principally because of the outliers, we estimated the lo-

 cation of the distribution of the 51 log error values for

 each experimental unit by the midmean, a robust estimate

 of location (Mosteller and Tukey 1977).

 Figure 13 shows plots of the 50 midmeans of the log

 absolute errors for the position-length experiment, and

 Figure 14 shows plots of the 80 midmeans for the posi-

 tion-angle experiment. In both figures the log absolute

 errors are plotted against the true percentages for each

 judgment type; superimposed on each plot are smooth

 curves computed by a scatterplot smoothing procedure

 called lowess (Cleveland 1979). For the position-length

 experiment, there appears to be a mild dependence of the

 log absolute errors on the true value for Judgment Types

 1-4 and a larger dependence for Type 5. In the position-

 angle experiment, there is a dependence for the pie charts

 but very little for the bar charts.

 Figure 11 is another plot of the 50 midmeans of the log

 absolute errors for the position-length experiment. Each

 panel shows the five midmeans for one of the 10 pairs of

 values whose ratio was judged; the five midmeans for the

 five types of judgments are plotted against the type num-

 ber. Above each panel is the true percentage that the
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 Figure 13. Position-length experiment: Midmeans of log absolute

 errors against true percentages for five judgment types.

 subjects were judging. The striking pattern is that the log

 absolute errors almost always increase from Type 1

 through Type 5. (The type numbers were chosen after the

 analysis to correspond to most accurate (1) to least ac-

 curate (5).) We will discuss this pattern in more detail

 later.

 The midmeans from the left panel of Figure 14 minus

 the corresponding midmeans in the right panel are plotted

 in Figure 15 against the true percentage, with a lowess

 curve superimposed. In only 3 of the 40 cases was the

 pie chart more accurate on average than the bar chart.

 Figure 16 shows average errors for each of the five

 judgment types in the position-length experiment (top)

 and each of the two judgment types in the position-angle

 experiment (bottom). The five values in the top panel are

 the means of the 10 midmeans for each judgment type

 (i.e., the means of the 10 midmeans in each panel of Fig-

 ure 13). The two values in the bottom panel are the means

 of the 40 midmeans for each judgment type (i.e., the

 means of the 40 midmeans in each panel of Figure 14).
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 Figure 14. Position-angle experiment: Midmeans of log absolute errors against true percentages for two judgment types.

 A 95% confidence interval is shown for each mean; these

 intervals are discussed in Section 4.4. The initial mid-

 means provide the requisite robustness to a small number

 of unusual observations. Since the midmeans are well

 behaved and have no distant outliers, we have taken a

 mean, rather than a robust statistic, to summarize them.

 The means in Figure 16 provide convenient, but rough,
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 Figure 15. Positon-angle experiment: Angle midmeans minus po-

 sition midmeans against true percentages.

 summaries of the two experiments. The summaries are

 rough because it is clear from Figures 13 and 14 that there

 is some dependence of log error on the true percent.

 Within an experiment it is reasonable to compare the

 means of the judgments because the set of true percent-

 ages is the same for each judgment, but it would be in-

 appropriate to compare the means of the first experiment

 with those of the second.

 The top panel of Figure 16 shows that average errors

 for length judgments are considerably larger than those

 for position judgments. A multiple comparison analysis

 (discussed in Section 4.4) showed that all pairs of the five

 averages are significantly different at the .05 level, except

 for Judgment Types 2 and 3. The larger of the two length

 values is 1.32 log units greater than the smallest of the

 three position values, which is a factor of 21 32 = 2.5.

 The smaller length value is .51 log units greater than the

 largest position value, which is a factor of 1.4. Thus the

 average errors for length judgments are 40%-250% larger

 than those for position judgments.

 The bottom panel of Figure 16 shows that the average

 error for angle judgments is considerably larger than for

 position judgments. The difference is .97 on the log scale,

 which is a factor of 2-97 = 1.96, and is statistically sig-

 nificant.

 Large Absolute Errors

 The top panel of Figure 17 shows a summary of the

 large errors for the position-length experiment. Of the

 2,550 judgments made by the subjects, 136 had a log error

 greater than 4. The top panel of Figure 17 shows the per-

 centage of these large errors that occurred for each of the
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 Figure 16. Log absolute error means and 95% confidence intervals for judgment types in position-length experiment (top) and position-

 angle experiment (bottom).

 judgment types. Seventy-eight percent of the large errors

 occurred for the length judgments; since there were three

 position judgments for each two length judgments, the

 rate of occurrence of large errors for length judgments is

 5.3 times that for position judgments.

 The bottom panel of Figure 17 shows the percentage

 of large errors (those greater than 4) for the position-

 angle experiment; in this experiment 219 of the 4,080

 judgments had large errors. Eighty-eight percent of the

 large errors occurred for the angle judgments; thus the

 rate of occurrence of large errors for the angle judgments

 is 7.3 times that for the position judgments.

 Bias

 Previously it was pointed out that subjective estimates

 of physical magnitudes can have systematic biases. To

 check for this in the two experiments, the errors,

 judged percentage - true percentage,

 were analyzed. Just as for the log absolute errors, the

 midmeans of the errors across subjects were computed

 for each experimental unit in the two experiments. These

 midmeans are plotted against the true percentages for

 each judgment type in the position-length experiment

 (Figure 18) and the position-angle experiment (Figure

 19), just as they were for the midmeans of the log absolute

 errors in Figures 13 and 14.

 Figure 18 shows a convincing pattern for Judgment

 Type 5; there appears to be substantial negative bias for

 true percentages between 30 and 70. Figure 19 shows a

 pattern for the angle judgments on the pie charts; again,

 in the middle range of the true percentages, there are

 many experimental units with a negative bias.

 Figure 20 shows the means of the midmeans for each

 judgment type in the two experiments; thus each value

 in the top panel is the mean of the midmeans in one panel

 of Figure 18, and each value in the bottom panel is the

 mean of the midmeans in one panel of Figure 19. As with

 the log absolute errors, these values are rough summaries

 because there appears to be a dependence of bias on the

 true percentage. Also shown are 95% confidence inter-

 vals for each mean, computed by a procedure described

 in the next section. The only source of significant bias

 appears to be the two length judgments and the angle

 judgment. The biases in these cases obviously contribute

 significantly to the log absolute errors. To see this, sup-

 pose that all subjects' judgments for an experimental unit

 had been identical; then we would have had

 log2( | bias I + .125) = log absolute error.
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 The values of the log absolute bias for the Type 4 length

 judgment, the Type 5 lengthjudgment, and the angle judg-

 ment are

 .98 2.20 1.36,

 respectively. The corresponding actual log absolute er-

 rors are

 2.36 2.72 2.01.

 Thus the log absolute biases are not small compared with

 the log absolute errors.

 4.4 Confidence Intervals

 The bootstrap (Efron 1982) proved to be a very con-

 venient tool for estimating the sampling distributions of

 the means of the log absolute errors and the biases. Be-

 cause each subject judged all of the experimental units

 in an experiment, the judgments of one unit are correlated

 with those of another, and modeling this correlation

 would have been a substantial chore. This correlation,

 the nonnormality of the log errors, and the use of the

 midmean make mathematical deviations of sampling dis-

 tributions intractable.

 Bootstrap Distribution of Means for Log Absolute Errors

 For each experiment we bootstrapped by drawing 1,000

 random samples of size 51 with replacement from the 51

 subjects. For each sample, the means of the midmeans

 of the log absolute errors were computed as in Figure 16.

 Thus in the position-length experiment, there were 1,000

 values of the five judgment-type means for the log ab-

 solute errors; this multivariate empirical distribution in

 five dimensions appeared to be well approximated by a

 multivariate normal distribution. This was established by

 making probability plots of the five marginal distributions

 and a number of linear combinations. The standard de-

 viations and the correlation coefficients computed from

 the five vectors of 1,000 numbers serve as estimates of

 the standard deviations and correlations of the five judg-

 ment-type means. Similarly in the position-angle exper-

 iment, there were 1,000 values of the two judgment-type

 means; for the log absolute errors, this bootstrap distri-

 bution was well approximated by a bivariate normal one.

 The 95% confidence intervals in Figure 16 are simply plus

 and minus 1.96 times the bootstrap standard deviation

 estimates.

 Using the normal approximation to the bootstrap dis-

 tribution of the means in the position-angle experiment,

 a 95% confidence interval for the difference (angle -

 position) in the log absolute error means is (.79, 1.15).

 For the position-length experiment, the bootstrap dis-

 tribution can be used to generate simultaneous confi-

 dence intervals for all pairs of differences of the means

 without being tied to any specific multiple comparison

 TYPE 1 (POSITION) ...

 TYPE 2 (POSITION) ...

 TYPE 3 (POSITION) 0

 TYPE 4 (LENGTH) .........0

 TYPE 5 (LENGTH) ............. . ..........

 TYPE 1 (POSITION) | l

 TYPE 2 (ANGLE) ..................l
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 Figure 17. Percentage of large errors.
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 Figure 18. Position-length experiment: Midmeans of errors

 against true percentages for five judgment types.

 method, such as the S or T method (Scheffe 1959). Let

 Oi, for i = 1, ... , 5, be the judgment-type means for the

 log absolute errors. Let Oik*, for k = 1, . . . , 5 and j =

 1, . .. , 1,000, be the 5,000 bootstrap values, and let Sij

 be the standard deviation of Oik* - Ojk*, for k = 1, ....

 1,000. We found the c such that for 95% of the 1,000

 bootstrap 5-tuples,

 I (6i - 0j) - (Oik* - Ojk*) | cs ij.

 This turned out to be 2.79. Thus

 Oi - O? + 2.79 sij for i, j = 1,... 5

 are a set of simultaneous 95% intervals for the differences

 of the means; these intervals are displayed in Figure 21.

 Note that only the means for Types 2 and 3 are not sig-

 nificantly different at the .05 level.

 Bootstrap Distribution of Means for Errors

 The bootstrap was used to assess the sampling distri-

 bution of the error means displayed in Figure 20; the

 bootstrap distribution was generated by 1,000 samples in

 a manner analogous to that described for the log absolute

 errors. Again, the multivariate normal was found to be a

 good approximation, and the confidence intervals in Fig-

 ure 20 show plus and minus 1.96 times the bootstrap stan-

 dard errors.

 4.5 Summary of the Experiments

 Two experiments were run in which subjects judged

 bar charts and pie charts. In the first experiment, five

 types of judgments were made-two length judgments

 and three judgments of position along a common scale.

 In the second experiment, there were two types of judg-

 ment-position and angle. For all types of judgments,

 subjects made visual assessments of what percentage one

 value was of a larger value; thus all recorded values were

 between 0 and 100. In both experiments there were 51

 subjects with usable data.

 Figure 16 summarizes the accuracy of the judgments.

 The top panel shows the first experiment and the bottom

 panel shows the second. The scale is the log base 2 of

 the absolute errors plus 1/8. In the first experiment, po-

 sition judgments were more accurate than length judg-

 ments by factors varying from 1.4 to 2.5. In the second

 experiment, position judgments were 1.96 times as ac-

 curate as angle judgments. The 95% confidence intervals

 shown in Figure 16 were computed by using the boot-

 strap. An important part of the contribution to the errors

 for length and angle judgments is consistent bias. When

 the true percentages are in the range of 25-50, subjects

 tend to underestimate values for these types of judg-

 ments.

 The first experiment suggested that the position task

 should be expanded to a whole range of tasks. As the

 distance between the two values being judged increased

 along an axis perpendicular to the common scale, the

 accuracy decreased. Type 1 judgments had the smallest

 distance, Type 2 the next smallest, and Type 3 the largest.

 Not surprisingly, after just two experiments a revision of

 the theory seems appropriate.

 5. APPLYING THE THEORY TO ANALYZE AND

 REDESIGN SEVERAL MUCH-USED

 GRAPH FORMS

 The mode of graph design that we advocate is the con-

 struction of a graphical form that uses elementary per-

 ceptual tasks as high in the hierarchy as possible. The

 hypothesis is that by selecting as high as possible, we will

 elicit judgments that are as accurate as possible, and

 therefore the graph will maximize a viewer's ability to

 detect patterns and organize the quantitative information.

 In this section we use this mode of graph design to

 analyze several much-used graph forms and to construct

 replacements for some of them. The comparison of old

 graph forms and new ones provides another type of ex-

 periment that can be used to decide the validity of our

 approach.
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 Figure 19. Position-angle experiment: Midmeans of errors against true percentages for two judgment types.

 5.1 Dot Charts and Bar Charts as Replacements

 for Divided Bar Charts and Pie Charts;

 Grouped Dot Charts and Grouped Bar Charts

 as Replacements for Divided Bar Charts

 For certain types of data structures, one cannot always

 use the most accurate elementary task, judging position

 along a common scale. But this is not true of the data

 represented in divided bar charts and pie charts; one can

 always represent such data along a common scale.

 A pie chart can always be replaced by a bar chart, thus

 replacing angle judgments by position judgments. In so

 doing it might be sensible in many cases to make the scale

 go from 0 to 100% so that the viewer can more readily

 appreciate the fraction that each bar is of 100%; but 0 to

 25 or 50% are also reasonable simple choices.

 Actually we prefer dot charts, which are introduced

 and discussed in Cleveland (1983), to bar charts. Figures

 16, 17, and 20 are dot charts. (The reasons for our pref-

 erence depart somewhat from our theme, so we refer the

 reader to Cleveland 1983.)

 Figure 22 is a pie chart. What is the ordering of the

 values of the five categories? The answer is not easy to

 find from the pie chart. From the dot chart in Figure 23,

 it is clear that the ordering from smallest to largest is A

 to E. This demonstrates the increase in ability to perceive

 patterns that results from the increased accuracy of per-

 ceptions based on position relative to that based on angle

 judgments.

 A divided bar chart can always be replaced by a

 grouped bar chart; again, we prefer a grouped dot chart

 (discussed in Cleveland 1982) to a grouped bar chart. To

 illustrate the replacement of divided bar charts, consider

 the graph in Figure 24. What is the ordering of the five

 items in category A? As with the pie chart, making the

 judgments is not easy. Figure 25 is a grouped dot chart

 of the data in Figure 24. For each of the categories A, B,

 and C, the totals and the item values are shown. Thus

 the many length judgments in the divided bar chart have

 been replaced by position judgments. It is clear that the

 order of the items in category A from smallest to largest

 is 1 to 5. Again, there is an increased ability to perceive

 patterns as a result of the increased accuracy of percep-

 tions.

 Our analysis has provided, in a sense, a resolution of

 the "Bar-Circle Debate," as Kruskal (1982) refers to it.

 This was a controversy (Eells 1926; Croxton 1927; Crox-

 ton and Stryker 1927; von Huhn 1927) about whether the

 divided bar chart or the pie chart was superior for por-

 traying the parts of a whole. The contest appears to have

 ended in a draw. We conclude that neither graphical form

 should be used because other methods are demonstrably

 better.

 5.2 Showing Differences Directly for

 Curve-Difference Charts

 In the Playfair chart of Figure 6, the vertical distances

 between the two curves encode pictorially England's bal-

 ance of payments with the East Indies. Thus the ele-

 mentary task in extracting the curve differences is per-

 ceiving length. It turns out that making such length

 judgments is inaccurate and even more difficult than on

 a divided bar chart. In fact the situation is so striking that
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 Figure 20. Error means and 95% confidence intervals for judgment types in position-length experiment (top) and position-angle

 experiment (bottom).

 an experiment with subjects recording judgments is not

 necessary; it has taken only a few examples to convince

 us. One is shown in Figure 26. It is almost impossible to

 get even a rough idea of the behavior of the differences

 of the curves in the nine panels. The problem is that the

 brain wants to judge minimum distance between the

 curves in different regions, and not vertical distance.

 Thus in each panel of Figure 26, one tends to see the

 curves getting closer, going from left to right. The actual

 vertical differences are plotted in Figure 27; it is clear

 that Figure 26 has not conveyed even the grossest qual-

 itative behavior of the differences.
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 Figure 21. Simultaneous 95% confidence intervals for differences of judgment-type means in position-length experiment.
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 Figure 22. Pie chart.

 The same problem exists in the Playfair chart of Figure

 6, although a little less severely. Figure 28 contains a

 Cartesian graph of the differences, which does a far better

 job of portraying them because the elementary perceptual

 task is judging position along a common scale. For ex-

 ample, Figure 28 does a far better job of showing the

 occurrence of the rapid rise and descent of the balance

 against England around 1760; in Figure 6 this peak goes

 almost unnoticed unless considerable cognitive mental

 effort is expended. A sensible graphing of these data
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 Figure 24. Divided bar chart.

 would show the import-export curves and the differences

 graphed directly, as in Figure 28.

 The remedy in this case seems simple: If differences

 are to be conveyed, they should also be plotted on their

 own Cartesian graph. This applies equally to the much-

 used divided line chart, sometimes called an aggregate

 line chart (Monkhouse and Wilkinson 1963). In such a

 graph the amounts in various categories, say A to D, are

 portrayed through time by plotting A, A + B, A + B +

 C, and A + B + C + D against time as four curves.

 Thus only A and the total, T = A + B + C + D, can

 be judged by perception along a common scale, whereas

 B, C, and D must be judged by perceiving vertical lengths

 between two curves. Our perceptual theory and examples

 strongly indicate that abandoning divided line charts and

 plotting A, B, C, D, and T directly will lead to far more

 accurate judgments.

 5.3 Framed-Rectangle Charts as Replacements

 for Statistical Maps With Shading

 Statistical maps that use shading (or color saturation

 or color hue) to encode a real variable, which Tukey

 (1979) called patch maps, are commonly used for por-

 traying measurements as a function of geographical lo-

 cation. Figure 5 is one example. Murder rate is encoded

 by the grid spacing, forming a kind of graph-paper col-

 lage.

 To judge the values of a real variable encoded on a

 patch map with shading, one must perform the elemen-

 tary perceptual task of judging shading, which is at the

 bottom of our perceptual hierarchy. One can move much

 farther up the hierarchy by using the framed rectangles

 discussed earlier to form a framed-rectangle chart. This
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 Figure 25. Dot chart with grouping.

 is illustrated in Figure 29 with the murder data portrayed

 in Figure 5. Had we merely shown the bars without the

 frames, we would have had what Monkhouse and Wilk-

 inson (1963) called a statistical map with located bars; the

 elementary task would then have been perceiving length.

 The framed rectangles, which are one step higher in the

 hierarchy, lead to more accurate judgments, for the rea-

 sons discussed in Section 3.

 The framed-rectangle chart also solves another serious

 problem of statistical maps with shading. On such patch

 maps the states are treated in a very uneven way because

 of their different areas. For example, in Figure 5 the total

 amount of black for each state is actually encoding

 number of murders

 - - ~~~x area.

 number of people

 The result is that Texas is imposing and Rhode Island is

 hard to see.

 There is another, more subtle perceptual problem that

 arises on a patch map with shading. In Figure 5, for ex-

 ample, one tends to see contiguous clusters of states: The

 two most prominent clusters are the north central states

 (North Dakota, South Dakota, Nebraska, Minnesota,

 Iowa, and Wisconsin) and New England (Maine, New

 Hampshire, Vermont, Massachusetts, Connecticut, and

 Rhode Island).

 Part of the reason why the clustering occurs so strongly

 on the patch map is the reduction in the accuracy of the

 perceived quantitative information; values group together

 because we cannot visually differentiate them. Thus the

 encoding of the data on the patch map provides a kind

 of visual data reduction scheme in which noise is reduced

 and a signal comes through. Unfortunately the signal is

 of poor quality, since the clustering is subject to the va-

 garies of the shading scheme. For example, the deep

 South states (Texas, Louisiana, Mississippi, Alabama,

 and Georgia) deserve to cluster together as forcefully as

 the New England states but do not because our sensitivity

 to differences at the high end of the scale appears to be

 greater than at the low end of the scale. The deep South

 states contain five of the six largest rates, and their range

 is 3.2. The range for New England is 2.7. Furthermore

 the largest deep South value (Louisiana) is 1.4 units larger

 than the next largest value in the cluster, and the smallest

 New England value (New Hampshire) is 1.3 units less

 than the next smallest value; but Louisiana appears to

 stand out in its cluster much more forcefully than does

 New Hampshire.

 If we want to perform data reduction, eliminating noise

 to allow a signal to come through, then we can use a
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 Figur 21 Cc c t F - 1

 Figure 26. Curve-difference chart. Figure 27. Curve differences.

 sensible numerical scheme together with a higher accu-

 racy chart such as the framed-rectangle chart. One pro-

 cedure, suggested by Tukey (1979), would be to smooth

 the variable as a function of geographical location and

 portray smoothed values. Another somewhat crude, but

 reasonable data reduction procedure is to group the data
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 Figure 28. Playfair data.
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 Figure 29. Framed-rectangle chart.

 into equal-length intervals and portray the midpoints.

 This has been done in Figure 30, and now the north cen-

 tral states, northern New England, and the deep South

 form more clear-cut visual clusters than in Figure 29.

 Another data reduction technique, a visual one, that

 results in effective but somewhat fuzzier clusters is sim-

 ply to reduce the vertical resolution of the framed rec-

 tangles by reducing their heights. This has been done in

 Figure 31; clusters of states now appear to form more

 readily than in Figure 29. It should be noted that this

 technique works because the reduction prevents one from

 optically detecting certain differences. In general one

 would not expect graph size to be a major factor in graph-

 ical perception until things were so small that differences

 would be optically blurred. Because the graph elements

 in our experiments were sufficiently large, as graph ele-

 ments usually are, size was not a factor that we needed

 to take into account. It is fortunate that this was so; other-

 wise the distance the viewer held the graph from his or

 her eyes would have been a factor.

 Our conclusion about patch maps agrees with Tukey's

 (1979), who left little doubt about his opinions by stating,

 "I am coming to be less and less satisfied with the set of

 maps that some dignify by the name statistical map and

 that I would gladly revile with the name patch map" (p.

 792).

 5.4 Graphs for Data Analysis

 The graphical forms discussed so far in this section are

 used more in data presentation than in data analysis. But

 our perceptual theory can serve equally well as a guide

 for designing graphical methods for statistical analyses.

 Triple Scatterplots

 The triple scatterplot is a useful tool in data analysis

 for understanding the structure of three-dimensional data.

 Figure 9 shows one implementation; perceiving the val-

 ues encoded by the circles requires the elementary task

 of judging area. Anscombe (1973) has suggested another

 scheme for typewriter terminals and printers in which

 overplotted characters, increasing in size and amount of

 black, encode the third variable.

 In a sense the framed-rectangle chart is a triple scat-

 terplot; thus one might think in terms of a general triple

 scatterplot procedure in which the third variable is coded

 by framed rectangles. But for general data analytic pur-

 poses, this is unlikely to work well because of a practical
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 difficulty-overlapping symbols. For the statistical map

 it was easy to avoid overlap, but for general scatterplots,

 where points can get very crowded, the problem would

 often be insurmountable.

 Circles can overlap a lot and still permit perception of

 circle. Part of the reason for this is that overlapping cir-

 cles tend to form regions that do not look like circles, so

 the individuals stand out. Since squares do not have this

 property, overlap becomes a problem much more

 quickly.

 Our perceptual theory suggests that the third variable

 be encoded by line length so that a more accurate ele-

 mentary perceptual task can be performed. We have not

 experimented with this procedure enough to know

 whether line overlap is a lesser or greater problem than

 circle overlap.

 Hanging Rootograms and Slopes of Normal

 Probability Plots

 It can be said that John Tukey has already implemented

 a part of our perceptual theory by recommending the

 redesign of two common statistical graphical methods.

 The hanging rootogram (Tukey 1972) modifies the usual

 method of superimposing a normal density on a histo-

 gram, converting the perceptual task from judging length

 to judging position along a common scale. Tukey (1962)

 also suggested modifying normal probability plots by

 plotting the slopes of lines connecting the median point

 (i.e., data median vs. the median of the normal, which is

 usually taken to be zero) with other points on the plot;

 the slope from the median point to the point associated

 with the ith largest order statistic is plotted against i. The

 viewer of an ordinary normal probability plot must judge

 whether the points form a straight line pattern, so Tukey's

 modification converts judgment of direction (slope) to

 judgment of position along a common scale.

 Symbols for Multidimensional Data

 One area of statistical graphics that has received a lot

 of attention is designing symbols for representing multi-

 dimensional data. Examples are polygons, Anderson

 glyphs, faces, profiles, and Kleiner-Hartigan trees

 (Chambers et al. 1983). Let us consider faces. Judging

 the values of the individual encoded variables requires

 five elementary perceptual tasks: position along non-

 aligned scales, length, direction, area, and amount of cur-

 vature. Thus extracting the quantitative information re-

 quires substantial perceptual processing; and there is no

 I = 0-4 = 4-8 j = 8-12 = 12-16

 I I b ,U d

 MURDER RATES PER 100,000 POPULATION, 1978

 Figure 30. Framed-rectangle chart.
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 Figure 31. Framed-rectangle chart.

 easy and direct elementary task that one can perform to

 allow the study of the relationship between two variables,

 as for a Cartesian plot. For this reason faces and the other

 symbolic displays tend not to tell us much about the ge-

 ometry of the multidimensional point cloud. Fixed or

 data-driven projections of the points onto planes (Tukey

 and Tukey 1981) appear to be more useful; each projec-

 tion is portrayed by a scatterplot, so the elementary tasks

 performed are judgments of position along a common

 scale and direction (slope). Of course the integration of

 the projections requires complex perceptual and cogni-

 tive mental tasks.

 6. PERSPECTIVES, REALISM, AND CRITICISM

 For some the word theory implies a detailed, system-

 atic, and comprehensive description of a subject. Such a

 meaning would, of course, be ludicrous for the tentative

 first step in this article. For us the identification and or-

 dering of the perceptual tasks is a theory in a less re-

 strictive sense: It is a set of plausible statements that

 describe a phenomenon-the relative accuracy with

 which various graphical forms convey quantitative infor-

 mation.

 We expect that our theory, like all theories, will

 undergo much revision as new experimental information

 is accumulated. The outcomes of the two experiments

 reported here were correctly predicted by the theory; po-

 sition judgments were more accurate than length judg-

 ments and angle judgments. The position-length exper-

 iment suggests, however, that a revision in the theory

 might be appropriate. Although Judgment Types 1-3 in-

 volved judgments of position along a common scale,

 tiamely the vertical scale of the bar charts, the horizontal

 distance between the graphical elements being judged

 varied from 0 cm for Type I to 2.8 cm for Type 2 to 5.6

 cm for Type 3; Figures 16 and 17 show that errors in-

 creased in going from Type 1 to Type 2 to Type 3. This

 suggests that the elementary task of judging position be

 expanded into a continuum of tasks for which accuracy

 is conjectured to decrease with increasing distance be-

 tween the graphical elements encoding the data, where

 distance is measured perpendicular to the axis along

 which the data are plotted. Not surprisingly, after just

 two experiments a revision in the theory appears nec-

 essary.

 The ordering of the perceptual tasks does not provide

 a complete prescription for how to make a graph. Rather,

 it provides a set of guidelines that must be used with

 judgment in designing a graph. Many other factors, such

 as what functions of the data to plot, must be taken into
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 account in the design of a graph. A discussion of this is

 given in Chambers et al. (1983, Ch. 8).

 We have used elementary perceptual task to describe

 the basic elements involved in our theory. It may have

 been more appropriate to call them elementary graphical

 encodings, emphasizing that they are basic ways of en-

 coding data on graphs. We cannot realistically claim to

 have isolated 10 basic, independent perceptual tasks.

 Each task is really a complex set of tasks, and there is

 much overlap. For example, it might be argued that judg-

 ing positions along nonaligned scales really involves mak-

 ing two length judgments, one from each end of the axis.

 Despite these shortcomings, we have used elementary

 perceptual task to emphasize that we are studying the

 decoding process of the human-graph interface.

 One substantial danger in performing graphical per-

 ceptual experiments is that asking people to record judg-

 ments will make them perform judgments differently from

 the way they perform them when they look at graphs in

 real life. Subjects will try to get the right answer and might

 perform much more highly cognitive tasks than the basic

 perceptual tasks they perform in real life. We tried to

 guard against this in various ways in our experiments:

 One way was to encourage subjects to work quickly,

 much as they might in looking at a graph in real life.

 Another was to omit tick marks and labels on axes except

 at the extremes. For example, consider the bar chart in

 the right panel of Figure 3. Had we put many tick marks

 and labels on the vertical axis, subjects could have judged

 ratios by reading values off the axis and performing a

 mental division. Although some people may perform such

 an operation in real life, it is not the basic perceptual

 processing from geometrical information that we wanted

 to study and that we conjecture is the main way viewers

 judge ratios in real life. We have no proof that our lab-

 oratory results are realistic and work in the field, but it

 appears plausible that this is so.

 Whatever the limitations of the current theory, it ap-

 pears to have led to some useful results. Its application

 to some of the most-used charts in graphical communi-

 cation (bar charts, divided bar charts, pie charts, and sta-

 tistical maps with shading) has led to replacements (dot

 charts, dot charts with grouping, and framed-rectangle

 charts). We do not lightly recommend the dismissal of

 some Qf the most popular graph forms, but it appears to

 be the inescapable conclusion of this analysis of graph

 design. If progress is to be made in graphics, we must be

 prepared to set aside old procedures when better ones

 are developed, just as is done in other areas of science.

 [Received May 1983. Revised October 1983.]
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