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Supervised versus unsupervised

e Supervised
— You have an outcome Y
— and some covariates X You typically want to solve
something like argminf E[(Y-f(X))?]
* Unsupervised
— You have a bunch of observations X

— and you want to understand the relationships
between them. You are usually trying to
understand patterns in X or group the variables in
X in some way



Techniques for unsupervised analysis

Kernel density estimation
Clustering

Principal components analysis/svd
MDS/Isomap/diffusion map



Estimating a univariate density

e Suppose that x,..... X, ~ F with the densityf(-)

« How to given an estimate f of the density?




Estimating a univariate density

* You have seen the histogram




Estimating a univariate density

* You have seen the histogram

Histogram of x
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Binning

Suppose that x;... .. X, ~ F with the densityf(-)

Bin the data; In math this is

Ii=(xo+jxhxo+(j+1)xh],j=-1,0,1,...
Calculate the counts in bins

Cj = ZI(Q‘? S Ij)
i=1

Parameters are g, h



Binning

* We may use the following to estimate f(-)

- 1 [ .- T - .
flr) = ﬂ#{z.kﬁ € (x — h,x + h|}

* This can be viewed as an approximation of the
density

| R
fle)=1lim —Plzx —h <X <az+h

h—0 2h

* This just replaces the theoretical expectation to
with their empirical counterparts
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The kernel density estimator

: 1
* Theformula f(r) = 5—#{i Xi € (¢ = h, + 1]}

may be written as

. l — r— X,
flz) = EZ“ ( p )

i=1

() —{ /2 ifla| <1

0 otherwise

* In general, you can write a kernel smoother as:

— X
" nh Zﬁ ( )

where [ K(x)dr =1 (thh guarantees that [ f(x)de = 1)




The kernel density estimator

* The formula f‘(.r)zr#{e X; € (w—h,x + hl}

may be written as

. 1 r—X;
flr) = EZ{L ( ; )

i=1

u.‘(f{.') — { éfz "H‘5| < 1

otherwise

* In general, you can write a kernel smoother as:

C— X
" nh Zh ( )

where [ K (x)dr =1 (this guarantees that ff Jdor = 1)

h 1s the bandwidth



Kernel and bandwidth

The bandwidth can be chosen in a large number of ways

Typically it is automatically chosen (e.g. in statistical
software)

Popular kernels add more weight to nearby points

— Gaussian i To — T;
Il},(.{'ﬂ. ..f'.!:_]l = D | 0 2| I)(f-} — (QW}—l;zf___—tz,z

A
— Tukey Biweight

(1—t*)?ift <1

Ky(xg.z;) =D ('FD ; 'ra|) D(t)

See more in Density Estimation for Statistics and Data
Analysis By Silverman



https://ned.ipac.caltech.edu/level5/March02/Silverman/Silver_contents.html
https://ned.ipac.caltech.edu/level5/March02/Silverman/Silver_contents.html

Bias variance tradeoff

e We often want to minimize

e = (j)- o)

2

_ (E[.f'(.f-)]—fm) + Var(f(x))
/

bias

* The bias of f increases and the variance off as
h increases. This is the bias-variance tradeoff .

* The best h is O(h'1/5). Also see here.


http://stat.ethz.ch/education/semesters/SS_2006/CompStat/sk-ch2.pdf

Clustering

* Clustering organizes things that are close into
groups
— How do we define close?
— How do we group things?
— How do we visualize the grouping?
— How do we interpret the grouping?



Hierarchical clustering

* An agglomerative approach
— Find closest two things
— Put them together
— Find next closest
* Requires
— A defined distance
— A merging approach
* Produces
— A tree showing how close things are to each other



How do we define close?

* Very important

— Often depends on the problem you are
considering

* Distance or similarity
— Euclidean distance
— Correlation similarity



Example distance-Euclidean

VX = X,) + (X -1,
Beijing (X,)Y,)

—

= (Y1-Y)

Shanghai —

l ;
(X,Yy) |
(X17X,)

V(AL —A3)2 4+ (By — Bo)2 + ...+ (Z — Z5)?



Hierarchical clustering

* See code and here for a faster implementation
of hclust

8
@



http://www.r-tutor.com/gpu-computing/clustering/hierarchical-cluster-analysis

Merging choices

Single
dHL(G, H) — min d”f
icG,i'eH
Complete
d‘;L(Gﬂ H ) — Inax d” '
icG,i'cH
Average

1
d-(_;ﬂ(G:. H) — N, _;I\'TH S: S: d.j.jf

ieG i'eH



Merging points - complete

 Maximum distance between points of two
sets




Merging points - Average




K-means clustering

e A partioning approach
— Fix a number of clusters
— Get "centroids" of each cluster
— Assign things to closest centroid
— Reclaculate centroids
* Requires
— A defined distance metric
— A number of clusters
— An initial guess as to cluster centroids

* Produces

— Final estimate of cluster centroids
— An assignment of each point to clusters



K-means-example
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K-means clustering - starting centroids
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K-means clustering - assign to closest
centroid




K-means clustering - recalculate

centroids
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K-means clustering - reassign values




K-means clustering - update centroids




K-means

‘_b.

Important parameters: x, centers, iter.max, nstart




K-means algorithm

i

. . (1) (]
Given initial clustersm, *,...,m,

!
]
J

we iterate between:

2 .
» V.J

Assign each point to a cluster

2

< H?Ep - TTEE; |

S-;H = {:Irp || — ’rn_?“

Update means

(t+1) 1 Z
LS?‘ N |"z‘.;'|

Stop when the m; have converged to local modes.



Model based clustering

Assume the data are drawn from a distribution:

G
f(:l?\?ﬂ My E) - Z W:ﬁ}ﬁé’(me?’ Eﬂ')

g=1

where T, is the probability a point belongs to group g and
qi‘r(;zr\;..cm 2.,) is the multivariate Guassian density.

- You can do this with other densities but you usually have to
"roll your own"

Gaussian densities are surprisingly flexible in many cases



Estimating parameters

EM-algorithm: first proposed by Dempster, A.P.; Laird, N.M.; Rubin, D.B.
in their seminal work

nl, ﬂ‘;_ ! q-".'}( €T ;Li_ ! ' > ;_ ! )
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https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
https://www.jstor.org/stable/2984875

 The Bayesian Information Criterion (BIC)

BIC

Selecting the model with Bayesian

Information Criterion

BIC =—-2loglik + (log N)d
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Heatmap in real applications

Color Key

W e e

ALL data See code


http://www.ncbi.nlm.nih.gov/pubmed/14684422

Heatmap in real applications
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Picture Taken from De Los Angeles et al. Nature2015
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http://www.ncbi.nlm.nih.gov/pubmed/26399828
http://www.ncbi.nlm.nih.gov/pubmed/26399828

Clustering with spatial information
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How to perform clustering for this data?

Picture taken from Kharchenko et al. Nature 2011



http://www.ncbi.nlm.nih.gov/pubmed/21179089
http://www.ncbi.nlm.nih.gov/pubmed/21179089
http://www.ncbi.nlm.nih.gov/pubmed/21179089

Clustering with spatial information

e Hidden Markov model
— See blackboard

* Rpackage: RHmm



