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Markov Models 
• A discrete (finite) system: 

– N distinct states. 

– Begins (at time t=1) in some initial state(s). 

– At each time step (t=1,2,…) the system moves  

  from current to next state (possibly the same as  

  the current state) according to transition 

  probabilities associated with current state. 

• This kind of system is called a finite, or discrete 
Markov model   

  
• After Andrei Andreyevich Markov (1856 -1922) 

https://en.wikipedia.org/wiki/Andrey_Markov
https://en.wikipedia.org/wiki/Andrey_Markov
https://en.wikipedia.org/wiki/Andrey_Markov
https://en.wikipedia.org/wiki/Andrey_Markov
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Outline 

•  Markov Chains (Markov Models) 

•  Hidden Markov Chains (HMMs) 

•  Algorithmic Questions 

•  Biological Relevance 
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Discrete Markov Model: Example 
• Discrete Markov 

Model with 5 states. 

• Each aij  represents the 
probability of moving 
from state i to state j 

• The aij are given in a 
matrix A = {aij} 

• The probability to 
start in a given state i 
is  pi , The vector p 
repre-sents these start 
probabilities. 
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Markov Property 
• Markov Property: The state of the system at time t+1  

  depends only on the state of the system at time t 

Xt=1 
Xt=2 Xt=3 Xt=4 Xt=5 

]  x X |  x P[X 

 ]  x X ,  x X , . . . ,  x X ,  x X |  x P[X
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Markov Chains 

Stationarity Assumption 

Probabilities independent of t when process is “stationary” 

So,  

 

This means that if system is in state i, the probability that 

the system will next move to state j is pij , no matter what 

the value of t is 

t 1 j t i ijfor all t, P[X   x |X   x ]  p   
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• raining today               rain tomorrow              prr = 0.4 

• raining today               no rain tomorrow        prn = 0.6 

• no raining today             rain tomorrow          pnr = 0.2 

• no raining today             no rain tomorrow     prr = 0.8 

Simple Minded Weather Example 
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Simple Minded Weather Example 
Transition matrix for our example 

 

    

 

• Note that rows sum to 1 

• Such a matrix is called a Stochastic Matrix 











8.02.0

6.04.0
P
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Coke vs. Pepsi 

Given that a person’s last cola purchase was Coke ™, 

there is a 90% chance that her next cola purchase will 

also be Coke ™. 

 If that person’s last cola purchase was Pepsi™, there 

is an 80% chance that her next cola purchase will also 

be Pepsi™. 

coke pepsi 

0.1 0.9 0.8 

0.2 
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Coke vs. Pepsi 
Given that a person is currently a Pepsi purchaser, 

what is the probability that she will purchase Coke 

two purchases from now? 




























66.034.0

17.083.0

8.02.0

1.09.0

8.02.0

1.09.0
2P











8.02.0

1.09.0
P

The transition matrices are: 

(corresponding to     

one purchase ahead) 
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Coke vs. Pepsi 

Given that a person is currently a Coke 

drinker, what is the probability that she will 

purchase Pepsi three purchases from now? 




























562.0438.0

219.0781.0

66.034.0

17.083.0

8.02.0

1.09.0
3P
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Coke vs. Pepsi 
Assume each person makes one cola purchase per 

week. Suppose 60% of all people now drink Coke, and 

40% drink Pepsi.  

What fraction of people will be drinking Coke three 

weeks from now? 

6438.0438.04.0781.06.0)0( )3(

101

)3(

000

1

0

)3(

03  


pQpQpQXP
i

ii

Let (Q0,Q1)=(0.6,0.4) be the initial probabilities. 

We will regard Coke as 0 and Pepsi as 1 

We want to find P(X3=0) 










8.02.0

1.09.0
P

P00 
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Equilibrium (Stationary) Distribution 

coke pepsi 

0.1 0.9 0.8 

0.2 

• Suppose 60% of all people now drink Coke, and 40% drink 
Pepsi. What fraction will be drinking Coke 
10,100,1000,10000 … weeks from now? 

• For each week, probability is well defined. But does it 
converge to some equilibrium distribution [p0,p1]? 

• If it does, then eqs. : .9p0+.2p1 =p0, .8p1+.1p0 =p1 

   must hold, yielding p0= 2/3, p1=1/3  . 



Equilibrium (Stationary) Distribution 

Whether or not there is a stationary distribution, and  

whether or not it is unique if it does exist, are determined  

by certain properties of the process.  

– Irreducible means that every state is accessible from every other state.  

– Aperiodic means that any state return to itself can occur at irregular 
times.  

– Positive recurrent means that the expected return time is finite for 
every state.  

coke pepsi 

0.1 0.9 0.8 

0.2 
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Equilibrium (Stationary) Distribution 

• If the Markov chain is positive recurrent, there exists 
a stationary distribution. If it is positive recurrent and 
irreducible, there exists a unique stationary 
distribution, and furthermore the process 
constructed by taking the stationary distribution as 
the initial distribution is ergodic. Then the average of 
a function f over samples of the Markov chain is 
equal to the average with respect to the stationary 
distribution, 

http://en.wikipedia.org/wiki/Ergodic_theory
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Equilibrium (Stationary) Distribution 

• Writing P for the transition matrix, a stationary 
distribution is a vector  π which satisfies the 
equation 

– Pπ = π . 

• In this case, the stationary distribution π is an 
eigenvector of the transition matrix, associated 
with the eigenvalue 1. 

http://en.wikipedia.org/wiki/Eigenvector
http://en.wikipedia.org/wiki/Eigenvalue
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Discrete Markov Model - Example 

• States – Rainy:1, Cloudy:2, Sunny:3 

 

 

• Matrix A –  

 

 

• Problem – given that the weather on day 1 (t=1) is sunny(3), what is the 
probability for the observation O: 
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Discrete Markov Model – Example (cont.) 

• The answer is -  
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Third Example: A Friendly Gambler 

 Game starts with 10$ in gambler’s pocket 

– At each round we have the following: 

• Gambler wins 1$ with probability p 

• Gambler loses 1$ with probability 1-p 

–  Game ends when gambler goes broke (no sister in bank),   

   or accumulates a capital of 100$ (including initial capital) 

–  Both 0$ and 100$ are absorbing states 

0 1 2 N-1 N 

p p p p 

1-p 1-p 1-p 1-p 

Start 

(10$) 

or 
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Fourth Example: A Friendly Gambler 

0 1 2 N-1 N 

p p p p 

1-p 1-p 1-p 1-p 

Start 

(10$) 

Irreducible means that every state is accessible from every other state. 
Aperiodic means that any state return to itself can occur at irregular 
times.  
Positive recurrent means that the expected return time is finite for 
every state. If the Markov chain is positive recurrent, there exists a 
stationary distribution. 
 
Is the gambler’s chain positive recurrent?  Does it have a stationary 
distribution (independent upon initial distribution)? 
 



Markov Chains 

See 
 http://www.statslab.cam.ac.uk/~james/Markov/  
Or  
http://probability.ca/MT/ 
for more detail 

http://www.statslab.cam.ac.uk/~james/Markov/
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Markov Chain A Simple Example 

• States: fair coin F, unfair (biased) coin B 

• Discrete times: flip 1, 2, 3, … 

• Initial probability: pF = 0.6, pB = 0.4 

• Transition probability 

 

• Prob(FFBBFFFB) 

 P(O = {FFBBFFFB} | A,p )

= pF ×aFF ×aFB ×aBB ×aBF ×aFF ×aFF ×aFB

= 0.6 ´ 0.9 ´ 0.1´ 0.7´ 0.3´ 0.9 ´ 0.9 ´ 0.1= 9.19 ´10-4

F B 
0.1 

0.3 0.9 0.7 
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Hidden Markov Model 

• Coin toss example 
 

 

 

 

• Coin transition is a Markov chain 

• Probability of H/T depends on the coin used 

• Observation of H/T is a hidden Markov chain 
(coin state is hidden) 
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Hidden Markov Model 

• Elements of an HMM (coin toss) 
– N, the number of states (F / B) 

– M, the number of distinct observation (H / T) 

– A = {aij} state transition probability 

– B = {bj(k)} emission probability 

 

 

– p ={pi} initial state distribution 
• pF = 0.4, pB = 0.6 

 











7.03.0

1.09.0
A

2.0)(,8.0)(

5.0)(,5.0)(





TbHb

TbHb

BB

FF
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HMM Applications 

• Stock market: bull/bear market hidden Markov chain, 
stock daily up/down observed, depends on big 
market trend 

• Speech recognition: sentences & words hidden 
Markov chain, spoken sound observed (heard), 
depends on the words 

• Digital signal processing: source signal (0/1) hidden 
Markov chain, arrival signal fluctuation observed, 
depends on source 

• Bioinformatics: sequence motif finding, gene 
prediction, genome copy number change, protein 
structure prediction, protein-DNA interaction 
prediction 
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Basic Problems for HMM 

1. Given , how to compute P(O|) observing 
sequence O = O1O2…OT 

• Probability of observing HTTHHHT … 
• Forward procedure, backward procedure 

2. Given observation sequence O = O1O2…OT and , 
how to choose state sequence Q = q1q2…qt 

• What is the hidden coin behind each flip 
• Forward-backward, Viterbi 

3. How to estimate  =(A,B,p) so as to maximize P(O| 
) 

• How to estimate coin parameters  
• Baum-Welch (Expectation maximization) 
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Problem 1: P(O|) 

• Suppose we know the state sequence Q 

 
– O = H T T H H H T 
– Q = F F B F F B B 

 
 

– Q = B F B F B B B 
 
 

• Each given path Q has a probability for O 

2.08.05.05.02.05.05.0

)()()()()()()(),|(



 TbHbHbHbTbTbHbQOP BBFFBFF

2.08.08.05.02.05.08.0

)()()()()()()(),|(



 TbHbHbHbTbTbHbQOP BBBFBFB

)()...()(),|( 2211 TqTqq ObObObQOP 
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Problem 1: P(O|) 

• What is the prob of this path Q? 
 

– Q = F F B F F B B 

 

 

– Q = B F B F B B B 

 

 

• Each given path Q has its own probability 

7.01.09.03.01.09.06.0

)|(



 BBFBFFBFFBFFF aaaaaaQP p

)|( QP

7.07.01.03.01.03.04.0

)|(



 BBBBFBBFFBBFB aaaaaaQP p
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Problem 1: P(O|) 

• Therefore, total pb of O = HTTHHHT 

• Sum over all possible paths Q: each Q with its 
own pb multiplied by the pb of O given Q 

 

 

• For path of T long and N hidden states, there 
are NT paths, unfeasible calculation 

 
QallQall

QOPQPQOPOP ),|()|()|,()|( 
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Solution to Prob1:  
Forward Procedure 

• Use dynamic 
programming 

• Summing at every time 
point 

• Keep previous 
subproblem solution to 
speed up current 
calculation 
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Forward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

 
 

– Pb of seeing H1 from F1 or B1 

 

 

    H         T         T         H      … 

 

   

a1(F) = pFbF (H) = 0.4 ´ 0.5 = 0.2

a1(B) = pBbB (H) = 0.6 ´ 0.8 = 0.48

)()( 11 Obi iip 

B 

F 
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Forward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

• Induction 

 

– Pb of seeing T2 from F2 or B2 

         F2 could come from F1 or B1 

          Each has its pb, add them up 

    H         T         T         H      … 

)()( 11 Obi iip 

)(])([)( 1

1

1 



  tj

N

i

ijtt Obaij 

+ 
B B 

F 

+ 

F 
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Forward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

• Induction 

 

 

 

 

    H         T         T         H      … 

0712.02.0)7.048.01.02.0()())()(()(

162.05.0)3.048.09.02.0()())()(()(

112

112




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TbaBaFF

BBBFB

FBFFF





)()( 11 Obi iip 

)(])([)( 1

1

1 



  tj

N

i
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+ 
B B 

F 

+ 
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Forward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

• Induction 
 

 

 

 

    H         T         T         H      … 

013208.02.0]7.00712.01.0162.0[)(

08358.05.0]3.00712.09.0162.0[)(

3

3





B

F





)()( 11 Obi iip 

)(])([)( 1

1

1 



  tj

N

i

ijtt Obaij 

+ 
B 

+ 
B 

+ 

+ 
B B 

F F 

+ 

F 

+ 
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Forward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

• Induction 
 

• Termination 

 

 

    H         T         T         H      … 

)()( 11 Obi iip 

)(])([)( 1

1

1 



  tj

N

i

ijtt Obaij 
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B B 
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+ 
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F 
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Solution to Prob1:  
Backward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

 

• Pb of coin to see certain flip after it 

 
 

 

  ...H       H        H        T 

1)()(

1)(

**

*





BF

i

TT

T





B 

F 
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Backward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

• Induction 

• Pb of coin to see certain flip after it 

1)(* iT

)()()(
1

11 jObai
N

j

ttjijt 


 
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Backward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

• Induction 

 

 

 

 

  ...H       H        H        T  ? 

1)(* iT

)()()(
1

11 jObai
N

j

ttjijt 


 

29.02.07.05.03.01)(1)()(

47.02.01.05.09.01)(1)()(

1

1









TbaTbaB

TbaTbaF

BBBFBFT

BFBFFFT





+ 

+ 

B 

F 
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Backward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

• Induction 

 

 

 

 

 ...H                 H         H         T 

1)(* iT

)()()(
1

11 jObai
N

j

ttjijt 


 

2329.029.08.07.047.05.03.0)()()()()(

2347.029.08.01.047.05.09.0)()()()()(

112

112









BHbaFHbaB

BHbaFHbaF

TBBBTFBFT

TBFBTFFFT





+ + 
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B B 

+ 

+ 

B 
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Backward Procedure 

• Coin toss, O = HTTHHHT 

• Initialization 

• Induction 

 

• Termination  

 

• Both forward and backward could be used 
to solve problem 1, which should give 
identical results 

1)(* iT

)()()(
1

11 jObai
N

j

ttjijt 


 

)()()()((*) 110 BHbFHb BBFF pp 
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Solution to Problem 2 
 Forward-Backward Procedure 

• First run forward and backward separately 

• Keep track of the scores at every point 

• Coin toss 

– α: pb of this coin for seeing all the flips now and before 

– β: pb of this coin for seeing all the flips after 

H T T H H H T 

α1(F) α2(F) α3(F) α4(F) α5(F) α6(F) α7(F) 

α1(B) α2(B) α3(B) α4(B) α5(B) α6(B) α7(B) 

β1(F) β2(F) β3(F) β4(F) β5(F) β6(F) β7(F) 

β1(B) β2(B) β3(B) β4(B) β5(B) β6(B) β7(B) 
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Solution to Problem 2 
 Forward-Backward Procedure 

 
 
 

• Coin toss 
 
 
 

• Gives probabilistic prediction at every time point 
• Forward-backward maximizes the expected number 

of correctly predicted states (coins) 


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
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Solution to Problem 2 
Viterbi Algorithm 

• Report the path that is most likely to give the 
observations 

 

• Initiation 
 

• Recursion 
 

• Termination 
 

• Path (state sequence) backtracking 
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
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
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T
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
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
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
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*   TTtqq ttt 
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Viterbi Algorithm 

• Observe: HTTHHHT  

• Initiation 
0)(

)()(

1

11





i

Obi ii



p

48.08.06.0)(

2.05.04.0)(

1

1





B

F




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Viterbi Algorithm 

  

   

 

 

  H        T         T         H 

F 

B 
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Viterbi Algorithm 

• Observe: HTTHHHT 

• Initiation 

 

• Recursion 

 

 

0)(
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1
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
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
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
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
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
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
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BBFF

TbaBaFB

TbaBaFF

BBBFB
i

FBFFF
i







)(,)(

0672.02.0)336.0,02.0max()()])(,)(([max)(

09.05.0)144.0,18.0max()()])(,)(([max)(
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


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Max instead of +, 
keep track path 
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Viterbi Algorithm 

• Max instead of +, keep track of path 

• Best path (instead of all path) up to here 

 

 

  H        T         T         H 

F F 

B B 
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Viterbi Algorithm 

• Observe: HTTHHHT 

• Initiation 

 

• Recursion 
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Viterbi Algorithm 

• Max instead of +, keep track of path 

• Best path (instead of all path) up to here 

 

 

  H          T         T         H 

F F 

B B 

F 

B 

F 
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Viterbi Algorithm 
• Terminate, pick state that gives final best δ 

score, and backtrack to get path 

 

 

  H        T          T         H  

 

 
 

• BFBB most likely to give HTTH 

F F 

B B 

F 

B 

F 

B B B 

F 

B 
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Solution to Problem 3 

• No optimal way to do this, so find local maximum 

• Baum-Welch algorithm (equivalent to 
expectation-maximization) 

– Random initialize  =(A,B,p)  

 

– Update  =(A,B,p) 

• p: % of F vs B on Viterbi path 

• A: frequency of F/B transition on Viterbi path 

• B: frequency of H/T emitted by F/B 


