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Some Results in Probability (1) 

• Suppose that X, Y are independent (          ) 
– E(cX) = ? (c is a constant) 

– E(X+Y) = ? 

– Var(cX) = ? 

– Var(X+Y) = ? 

• Suppose             are mutually independent 
identically distributed (i.i.d.) 
–   

–   

 

YX 
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Some Results in Probability (2) 

• The Law of Large Number (LLN) 
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Statistical Inference 

• Draw conclusions about a population from a 
sample 

• Two approaches 

– Estimation 

– Hypothesis testing 

 



Estimation 

• Point estimation—summary statistics from 
sample to give an estimate of the true population 
parameter 

 

 
– The LLN implies that when n is large, these should be 

close to the true parameter values 

– These estimates are random 

• Confidence intervals (CI): indicate the variability 
of point estimates from sample to sample 
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Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval of level 95% 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence interval 

• Assume                          , then                 (σ is 
known) 

–   

–  Confidence interval 

–  Repeatedly construct the confidence interval, 
95% of the time, they will cover μ  

–  In the BMI example, μ=32.3, σ=6.13, n = 20 

),(~ 2

1 NXX n ),(~
2

n
NX n




95.0)
2

|(| 
n

XP n














n
X

n
X nn

 2
,

2



Confidence Interval for the Mean 

• Assume                          , then                        (σ is 
known) 

–   

–  Confidence interval of level 1-α 
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–   
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Confidence Interval for the Mean 

• Assume                          , then                        (σ is 
known) 

–   

–  Confidence interval of level 1-α 

• What if σ is unknown? 

– t-statistics! 
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Confidence Interval for the Mean 

• Assume                          , then 

–                                     by the LLN. 

–  Replace σ2 by      , then  

– Confidence interval of level 1-α  
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Confidence Interval for the Mean 

• Assume                          , then 

–                                     by the LLN. 

–  Replace σ2 by      , then  

– Confidence interval of level 1-α  
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Confidence Interval for the Mean 

• Measure serum cholesterol (血清胆固醇) in 
100 adults 

 

• Construct a 95% CI for the mean serum 
cholesterol based on t-distribution 

 

• CI based on normal distribution 

 

 

Lmmols

Lmmolx
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Confidence interval based on the CLT 

• Assume             are i.i.d. random variable with 
population mean μ and population variance σ2 

– Construct CI for μ? 

– From the CLT, approximately,   

– From the LLN,  

– The asymptotic CI of level 1-α is  
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Confidence Interval for the 
proportions 

• Telomerase  
– a ribonucleoprotein polymerase 

– maintains telomere ends by addition of the 
telomere repeat TTAGGG 

–  usually suppressed in postnatal somatic cells 

– Cancer cells (~90%) often have increased 
telomerase activity, making them immortal (e.g. 
HeLa cells)  

– A subunit of telomerase is encode by the gene 
TERT (telomerase reverse transcriptase) 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC317024/


Confidence Interval for the 
proportions 

• Huang et. al (2013) found that TERT promoter mutation 
is highly recurrent in human melanoma 

– 50 of 70 has the mutation 

• Construct a 95% CI for the proportion (p) of melanoma 
genomes that has the TERT promoter mutation 

– From the data above, our estimate is  

– The standard error is  

– The CI is  

• Note: to guarantee this approximation good, 
need p and 1-p ≥ 5/n 

714.070/50ˆ  xp

054.0/)ˆ1(ˆ  nppSE

]82.0,61.0[]*96.1ˆ,*96.1ˆ[  SEpSEp

http://www.sciencemag.org/content/339/6122/957.full


Hypothesis testing 

• Scientific research often starts with a 
hypothesis 

– Aspirin can prevent heart attack 

– Imatinib can treat CML patient 

– TERT mutation can promote tumor progression 

• Collect data and perform statistical analysis to 
see if the data support the hypothesis or not 



Steps in hypothesis testing 

• Step 1. state the hypothesis 

– Null hypothesis 

H0: no different, effect is zero or no improvement  

–  Alternative hypothesis 

H1: some different, effect is nonzero 

 Directionality—one-tailed or two-tailed 

  μ<constant 

   μ≠constant 



Steps in hypothesis testing 

• Step 2. choose appropriate statistics 

– Test statistics depends on your hypothesis 

• Comparing two means 
 z-test or t-test 

• Test independence of two categorical variables 
Fisher’s test or chi-square test 

  



Steps in hypothesis testing 

• Step 3. Choose the level of significance—α 

– How much confidence do you want in decision to 
reject the null hypothesis 

– α is also the type I error or false positive level 

– Typically 0.05 or 0.01 



Steps in hypothesis testing 

• Step 4. Determine the critical value of the test 
statistics that must be obtained to reject the 
null hypothesis under the significance level 

– Example—two-tailed 0.05 significance level for z-
test 

Rejection region 



Steps in hypothesis testing 

• Step 5. Calculate the test statistic 
– Example: t-statistic 

 
 

• Step 6. Compare the test statistic to the critical 
value 
– If the test statistic is more extreme than the critical 

value, reject H0  
DO NOT ACCEPT H1 

– Otherwise, Do Not reject or Fail to reject H0 
DO NOT ACCEPT H0 
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S
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Steps in hypothesis testing: an 
example 

• Data Pima.tr in the MASS package 
– Data from Pima Indian heritage women living in 

USA (≥21) testing for diabetes 

– Question: Is the mean BMI of Pima Indian heritage 
women living in USA testing for diabetes is the 
same as the mean women BMI (26.5) 

• Step 1. state the hypothesis 
– Let μ be the mean BMI of Pima Indian heritage 

women living in USA 

– H0: μ=26.5; H1: μ≠26.5 



Steps in hypothesis testing: an 
example 

• Step 2. Choose appropriate test 
– Two-sided t-test 

• Hypotheses problem 
μ= μ0; H1: μ≠ μ0 

• Assumptions 

                                      are independent, σ is unknown 

• Test statistic                            (under H0, follows tn-1) 

• Critical value  

 

– Check if the test is appropriate 
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Steps in hypothesis testing: an 
example 

• Step 3. Choose a significance level α=0.05 

• Step 4. Determine the critical value 
–  From n = 200,   

– Get  

• Step 5. Calculate the test statistic 

 

• Step 6. Compare the test statistic to the 
critical value 
–  Since|t| > Ccri,0.05,we reject the null hypothesis 
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P-value 

• Often desired to see how extreme your observed 
data is if the null is true 
– P-value 

• P-value 
– the probability that you will observe more extreme 

data under the null 

– The smallest significance level that your null would be 
rejected 

• In the previous example,  
P-value = P(|T|>t) = 1.3e-29 



Making errors 

• Type I error (false positive) 
– Reject the null hypothesis when the null hypothesis is true 

– The probability of Type I error is controlled by the significance level α 

• Type II error (false negative) 
– Fail to reject the null hypothesis when the null hypothesis is false 

– Power = 1- probability of Type II error = 1- β 

– Power =  P(reject H0 | H0 is false) 

• Which error is more serious? 
– Depends on the context 

– In the classic hypothesis testing framework, Type I error is more 
serious 



Making Errors 
• Here’s an illustration of the four situations in a 

hypothesis test: 

α 

1-α 

Power = 1- β 

 β 



Making Errors (cont.) 

• When H0 is false and we fail to reject it, we 
have made a Type II error. 
– We assign the letter  to the probability of this 

mistake. 

– It’s harder to assess the value of  because we 
don’t know what the value of the parameter really 
is. 

– There is no single value for --we can think of a 
whole collection of ’s, one for each incorrect 
parameter value. 



Making Errors (cont.) 

• We could reduce  for all alternative parameter 
values by increasing . 
– This would reduce  but increase the chance of a Type I 

error. 

– This tension between Type I and Type II errors is inevitable. 

• The only way to reduce both types of errors is to 
collect more data. Otherwise, we just wind up 
trading off one kind of error against the other.  



Power 

• When H0 is false and we reject it, we have done the 
right thing. 

– A test’s ability to detect a false hypothesis is called the 
power of the test. 

– The power of a test is the probability that it correctly 
rejects a false null hypothesis. 

• When the power is high, we can be confident that 
we’ve looked hard enough at the situation. 

• The power of a test is 1 – .  



Reducing Both Type I and Type II Error 

• Original comparison • With a larger sample size: 



Hypothesis test for single proportion 

• Kantarjian et al. (2012) studied the effect of 
imatinib therapy on CML patients 
– CML: Chronic myelogenous leukemia (慢性粒细胞性
白血病) 

– 95% of patients have ABL-BCR gene fusion 

– Imatinib was introduced to target the gene fusion 

– Since 2001, the 8-year survival rate of CML patient in 
chronic phase is 87%(361/415) (with Imatinib 
treatment) 
• Before 1990, 20% 

• 1991-2000, 45% 

 

 

http://bloodjournal.hematologylibrary.org/content/119/9/1981.long
http://bloodjournal.hematologylibrary.org/content/119/9/1981.long
http://bloodjournal.hematologylibrary.org/content/119/9/1981.long


Hypothesis test for single proportion 

• Suppose that we want to test if Imatinib can 
improve the 8-year survival rate 

• Step 1. state the hypothesis 
– H0: μ=0.45 vs H1: μ >0.45 (μ is the 8-year survival rate 

with Imatinib treatment) 

• Step 2. Choose an appropriate test 
– Z-test based on the CLT 

– Test statistic 
• Follow standard normal under the null 

• Reject null if z > Ccrt 

 

 



Hypothesis test for single proportion 

• Step 3. Choose the significance level α=0.01 

• Step 4. Determine the critical value 

 

• Step 5. Calculate the test statistic 

 

• Step6. Compare the test statistic with the 
critical value, reject the null 

– Pvalue = 1.4e-66 
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Comparing two populations—two 
sample z-test 

• Consider Fisher’s Iris data 

– Interested to see if Sepal.Length of Setosa and 
versicolor are the same 

– Let μ1 and μ2 be their Sepal.Lengths, respectively 

• State the hypothesis 

– H0: μ1 = μ2  VS  H1: μ1 ≠ μ2  

– H0: μ1 2 = μ1 -μ2 =0 VS  H1: μ1 2 ≠ 0 

 

 



Comparing two populations—two 
sample z-test 

• Choose the appropriate test 

– First Assume that the data from both groups are 
normally distributed with known variance (σ1= 
0.35, σ2=0.38) 
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– First Assume that the data from both groups are 
normally distributed with known variance (sd1= 
0.35, sd2=0.38) 

 

 

 



Comparing two populations—two 
sample z-test 

• Choose the appropriate test 
– First Assume that the data from both groups are 

normally distributed with known variance (σ1= 0.35, 
σ2=0.38) 

–  We have  

 

 

 

• Significance Level α=0.01 
–   
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Comparing two populations—two 
sample z-test 

• Calculate the test statistics 

–  z = -10.52 

• |z| > 2.58, reject the NULL 

 

 

• One-sided test: 

• H0: μ1 = μ2  VS  H1: μ1 > μ2  

• H0: μ1 = μ2  VS  H1: μ1 < μ2  
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Comparing two populations—two 
sample t-test 

• Consider Fisher’s Iris data 

– Interested to see if Petal.Length of versicolor and 
virginica are the same 

– Let μ1 and μ2 be their Petal.Length, respectively 

• State the hypothesis 

– H0: μ1 = μ2  VS  H1: μ1 ≠ μ2  

– H0: μ1 2 = μ1 -μ2 =0 VS  H1: μ1 2 ≠ 0 

 



Comparing two populations—two 
sample t-test 

• Choose the appropriate test 

– First Assume that the data from both groups are 
normally distributed with unknown but equal 
variance  

 

 

 



Comparing two populations—two 
sample t-test 

• Choose the appropriate test 

– First Assume that the data from both groups are 
normally distributed with unknown but equal 
variance  

 

 

 



Comparing two populations—two 
sample t-test 

• Choose the appropriate test 

– First Assume that the data from both groups are 
normally distributed with unknown but equal 
variance  

 

 

 



Comparing two populations—two 
sample t-test 

• Choose the appropriate test 

– First Assume that the data from both groups are 
normally distributed with unknown but equal 
variance  

– F-test for equal variance gives p-value 0.26 

 

 

 

–                                                                has tn1+n2-2 

 

 



Comparing two populations—two 
sample t-test 

• Significance level 0.01 

–   

• Calculate the test statistic 

– t = -12.6 

• Reject the Null (|t| > 2.63) 

–   
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Comparing two populations—two 
sample t-test (unequal variance) 

• Consider Fisher’s Iris data 

– Interested to see if Sepal.Length of Setosa and 
versicolor are the same 

– Let μ1 and μ2 be their Petal.Length, respectively 

• State the hypothesis 

– H0: μ1 = μ2  VS  H1: μ1 ≠ μ2  

– H0: μ1 2 = μ1 -μ2 =0 VS  H1: μ1 2 ≠ 0 

 



Comparing two populations—two 
sample t-test 

• Choose the appropriate test 
– First Assume that the data from both groups are 

normally distributed 
– F-test of equal variance gives pvalue=0.009 

(s1=0.35,s2=0.51) 
–  Test statistic  

 
 
 

 
 
This distribution is NOT exact 

 



Comparing two populations—two 
sample t-test 

• Significance level 0.01 

–   

• Calculate the test statistic 

– t = -10.5 

• Reject the Null (|t| > 2.68) 

–   
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BOOTSTRAPPING 
Biostatistics 



Bootstrapping 

• Bootstrapping is a computational procedure 
for: 

– Calculating standard errors 

– Forming confidence intervals 

– Performing hypothesis tests 

– Improving predictors 

• Originally proposed by Efron in 1979  

http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1176344552
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1176344552
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1176344552


The Basic Idea 

The “true” 
 distribution 
 in the sky 

Sample 1 
Y1

1, Y1
2… Y1

k 

… Sample 2 
Y2

1, Y2
2… Y2

k 

Sample 3 
Y3

1, Y3
2… Y3

k 

Sample N 
YN

1, YN
2… YN

k 

Y1 Y3 YN Y2 

μ 

•Any actual sample of data was 
drawn from the unknown “true” 
distribution 

•We use the actual data to make 
inferences about the true 
parameters (μ) 

•Each green oval is the sample that 
“might have been” 

•The distribution of our estimator (Y) depends on both the true distribution and the size 
(k) of our sample 

Theoretical Picture 



The Basic Idea 

The actual 
 sample 
 Y1, Y2… Yk 

Re-sample 1 
Y*1

1, Y*1
2… Y*1

k 

… Re-sample 2 
Y*2

1, Y*2
2… Y*2

k 

Re-sample 3 
Y*3

1, Y*3
2… Y*3

k 

Re-sample N 
Y*N

1, Y*N
2… Y*N

k 

Y*1 Y*3 Y*N Y*2 

Y 

•Treat the actual distribution as a 
proxy for the true distribution. 

•Sample with replacement your 
actual distribution N times. 

•Compute the statistic of interest on 
each “re-sample”. 

•{Y*} constitutes an estimate of the distribution of Y. 

The Bootstrapping Process 



Theoretical vs. Empirical 
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•Graph on left:  Y-bar calculated from an ∞ number of samples from the 
“true distribution”. 

•Graph on right:  {Y*-bar} calculated in each of 1000 re-samples from the 
empirical distribution. 

•Analogy:  μ : Y  ::   Y : Y* 



Summary 

• The empirical distribution – your data – serves as 
a proxy to the “true” distribution. 

• “Resampling” means (repeatedly) sampling with 
replacement. 

• Resampling the data is analogous to the process 
of drawing the data from the “true distribution”. 

• We can resample multiple times  
• Compute the statistic of interest T on each re-sample 

• We get an estimate of the distribution of T. 



Motivating Example 

• Let’s look at a simple case where we all 
know the answer in advance. 

• Pull 500 draws from the n(5000,100) 
dist. 

• The sample mean ≈ 5000 

– Is a point estimate of the “true” 
mean μ. 

– But how sure are we of this 
estimate? 

• From theory, we know that: 

 

47.4
500

100/).(.  NXds 

raw data

statistic value

#obs 500          

mean 4995.79

sd 98.78

2.5%ile 4812.30
97.5%ile 5195.58



Visualizing the Raw Data 

• 500 draws from n(5000,100)  

• Look at summary statistics, histogram, 
probability density estimate, QQ-plot. 

• … looks pretty normal 

raw data

statistic value

#obs 500          

mean 4995.79

sd 98.78

2.5%ile 4812.30
97.5%ile 5195.58
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Sampling With Replacement 

Now let’s use resampling to estimate the s.d. of 
the sample mean (≈4.47) 

• Draw a data point at random from the data set. 

– Then throw it back in 

• Draw a second data point. 

– Then throw it back in… 

• Keep going until we’ve got 500 data points. 

– You might call this a “pseudo” data set. 

• This is not merely re-sorting the data. 

– Some of the original data points will appear more than once; others 
won’t appear at all. 

 



Resampling 

• Sample with 
replacement 500 data 
points from the 
original dataset S 
– Call this S*1 

• Now do this 999 more 
times! 
– S*1, S*2,…, S*1000 

• Compute X-bar on 
each of these 1000 
samples. 

S*N

... 

S*10

S*9

S*8

S*7

S*6

S*5

S*4

S*3

S*2

S*1

S



R Code 

norm.data <- rnorm(500, mean=5000, sd=100) 

boots <- function(data, R){ 

b.avg <<- c(); b.sd <<- c() 

for(b in 1:R) { 

 ystar <- sample(data,length(data),replace=T) 

 b.avg <<- c(b.avg,mean(ystar)) 

 b.sd  <<- c(b.sd,sd(ystar))} 

} 

boots(norm.data, 1000) 



Results 

• From theory we know that  X-bar ~ 
n(5000, 4.47)  

• Bootstrapping estimates this pretty 
well! 

• And we get an estimate of the whole 
distribution, not just a confidence 
interval. 
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raw data X-bar

statistic value theory bootstrap

#obs 500          1,000      1,000      

mean 4995.79 5000.00 4995.98

sd 98.78 4.47 4.43

2.5%ile 4705.08 4991.23 4987.60
97.5%ile 5259.27 5008.77 5004.82



Two Ways of Looking at a Confidence Interval 

• Approximate normality assumption 

– X-bar ±2*(bootstrap dist s.d.) 

• Percentile method 

– Just take the desired percentiles of the bootstrap 
histogram. 

– More reliable in cases of asymmetric bootstrap 
histograms. 

raw data X-bar

statistic value theory bootstrap

#obs 500          1,000      1,000      

mean 4995.79 5000.00 4995.98

sd 98.78 4.47 4.43

2.5%ile 4705.08 4991.23 4987.60
97.5%ile 5259.27 5008.77 5004.82

 mean(norm.data) - 2 * sd(b.avg) 

[1] 4986.926 

 mean(norm.data) + 2 * sd(b.avg) 

[1] 5004.661 

  



And a Bonus 

• Note that we can calculate both the mean and standard deviation of each 
pseudo-dataset. 

• This enables us to estimate the correlation between the mean and s.d. 

• Normal distribution is not skew  mean, s.d. are uncorrelated. 

• Our bootstrapping experiment confirms this. 
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More Interesting Examples 

• We’ve seen that bootstrapping replicates a 
result we know to be true from theory. 

• Often in the real world we either don’t know 
the ‘true’ distributional properties of a 
random variable… 

• …or are too busy to find out. 

• This is when bootstrapping really comes in 
handy. 



Skewed Data 
• 2700 data points. 

• Mean = 3052, Median = 1136 

 

• Let’s estimate the distributions of the sample 
mean & 75th %ile. 

• Gamma?  Lognormal?  Don’t need to know. 

0%        25%        50%        75%       100% 

51.84   482.42     1136.10   3094.09 48346.82 



Bootstrapping Sample Avg, 75th %ile 

2800 3000 3200 3400

0
.0

0
0

0
.0

0
2

0
.0

0
4

bootstrap dist of severity sample avg

-3 -2 -1 0 1 2 3

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

Normal Q-Q Plot

2800 2900 3000 3100 3200 3300 3400

0
.0

0
0

0
.0

0
2

bootstrap dist of severity 75th %ile

-3 -2 -1 0 1 2 3

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

Normal Q-Q Plot



What about the 90th %ile? 

• So far so good – bootstrapping shows that many of our sample statistics – even 
average severity! – are approximately normally distributed. 

• But this breaks down if our statistics is not a “smooth” function of the data… 

– Often in the loss reserving we want to focus our attention way out in the tail… 

• 90th %ile is an example. 
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Variance Related to the Mean 

• As with the normal example, we can calculate both the sample average 
and s.d. on each pseudo-dataset. 

• This time (as one would expect) the variance is a function of the mean. 
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Bootstrapping a Correlation Coefficient #1 

• About 700 data points 
• Credit on a scale of 1-100 

– 1 is worst; 100 is best 
• Age, credit are linearly related 

– See plot 
• R2≈.08  ρ≈.28 

– Older people tend to have better credit 
• What is the confidence interval around ρ? 
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Bootstrapping a Correlation Coefficient #1 

• ρ appears normally distributed. 

– ρ ≈ .28 

– s.d.(ρ) ≈ .028 

• Both confidence interval calculations agree fairly well: 

> quantile(boot.avg,probs=c(.025,.975)) 
     2.5%     97.5%  
0.2247719 0.3334889  
> rho - 2*sd(boot.avg); rho + 2*sd(boot.avg) 
0.2250254   0.3354617 
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Bootstrapping a Correlation Coefficient #2 

• Let’s try a different example. 

• ≈1300 zip-code level data points 

• Variables:  population density, median #vehicles/HH 

• R2≈.50 ; ρ ≈ -.70 
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Bootstrapping a Correlation Coefficient #2 

• ρ more skew. 

– ρ ≈ -.70 

– 95% conf interval:  (-.75, -.67) 

– Not symmetric around ρ 

– Effect becomes more pronounced the higher the value of ρ.  

-0.75 -0.70 -0.65

0
5

1
0

1
5

2
0

correlation coefficient - bootstrap dist

-3 -2 -1 0 1 2 3

-0
.7

5
-0

.7
0

-0
.6

5

Normal Q-Q Plot


